{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:58:56Z","timestamp":1726761536107},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61702066","11747125"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007957","name":"Scientific and Technological Research Program of Chongqing Municipal Education Commission","doi-asserted-by":"publisher","award":["KJ1704080"],"id":[{"id":"10.13039\/501100007957","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013223","name":"Chongqing Research Program of Basic Research and Frontier Technology","doi-asserted-by":"publisher","award":["cstc2017jcyjAX0256","cstc2018jcyjAX0154"],"id":[{"id":"10.13039\/501100013223","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Research Innovation Program for Postgraduate of Chongqing","award":["CYS17217","CYS18238"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.knosys.2019.06.035","type":"journal-article","created":{"date-parts":[[2019,7,2]],"date-time":"2019-07-02T18:40:22Z","timestamp":1562092822000},"page":"104827","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":58,"special_numbering":"C","title":["Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis"],"prefix":"10.1016","volume":"188","author":[{"given":"Chenquan","family":"Gan","sequence":"first","affiliation":[]},{"given":"Lu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zufan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhangyi","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2019.06.035_b1","doi-asserted-by":"crossref","unstructured":"L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, K. Xu, Adaptive recursive neural network for target-dependent twitter sentiment classification, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014, pp. 49\u201354.","DOI":"10.3115\/v1\/P14-2009"},{"key":"10.1016\/j.knosys.2019.06.035_b2","doi-asserted-by":"crossref","unstructured":"M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, SemEval-2014 Task 4: Aspect based sentiment analysis, in: Proceedings of the 8th International Workshop on Semantic Evaluation, SemEval@COLING, 2014, pp. 27\u201335.","DOI":"10.3115\/v1\/S14-2004"},{"key":"10.1016\/j.knosys.2019.06.035_b3","doi-asserted-by":"crossref","unstructured":"S. Ruder, P. Ghaffari, J.G. Ghaffari, A hierarchical model of reviews for aspect-based sentiment analysis, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 999\u20131005.","DOI":"10.18653\/v1\/D16-1103"},{"key":"10.1016\/j.knosys.2019.06.035_b4","first-page":"18143","article-title":"A methodology to enhance the accuracy of aspect level sentiment analysis using imputation of missing sentiment","volume":"8","author":"Jenifer","year":"2017","journal-title":"Int. J. Recent Sci. Res."},{"key":"10.1016\/j.knosys.2019.06.035_b5","doi-asserted-by":"crossref","unstructured":"Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for aspect-level sentiment classification, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 606\u2013615.","DOI":"10.18653\/v1\/D16-1058"},{"key":"10.1016\/j.knosys.2019.06.035_b6","doi-asserted-by":"crossref","unstructured":"P. Vijayaraghavan, I. Sysoev, S. Vosoughi, et al. DeepStance at SemEval-2016 Task 6: Detecting stance in Tweets using character and word-level CNNs, in: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, 2016, pp. 413\u2013419.","DOI":"10.18653\/v1\/S16-1067"},{"key":"10.1016\/j.knosys.2019.06.035_b7","doi-asserted-by":"crossref","unstructured":"Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM, in: Proceedings of the 30-th AAAI Conference on Artificial Intelligence, 2018, pp. 5876\u20135883.","DOI":"10.1609\/aaai.v32i1.12048"},{"key":"10.1016\/j.knosys.2019.06.035_b8","doi-asserted-by":"crossref","unstructured":"M. Yang, W. Tu, J. Wang, F. Xu, X. Chen, Attention based LSTM for target dependent sentiment classification, in: Proceedings of the 31th AAAI Conference on Artificial Intelligence, 2017, pp. 5013\u20135014.","DOI":"10.1609\/aaai.v31i1.11061"},{"key":"10.1016\/j.knosys.2019.06.035_b9","doi-asserted-by":"crossref","unstructured":"D. Ma, S. Li, X. Zhang, H. Wang, et al. Interactive attention networks for aspect-level sentiment classification, in: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 4068\u20134074.","DOI":"10.24963\/ijcai.2017\/568"},{"key":"10.1016\/j.knosys.2019.06.035_b10","doi-asserted-by":"crossref","unstructured":"C. Li, X. Guo, Q. Mei, Deep memory networks for attitude identification, in: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017, pp. 671\u2013680.","DOI":"10.1145\/3018661.3018714"},{"key":"10.1016\/j.knosys.2019.06.035_b11","doi-asserted-by":"crossref","unstructured":"T. Khalil, S.R. El-Beltagy, MNileTMRG at SemEval-2016 Task 5: Deep convolutional neural networks for aspect category and sentiment extraction, in: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, 2016, pp. 271\u2013276.","DOI":"10.18653\/v1\/S16-1043"},{"key":"10.1016\/j.knosys.2019.06.035_b12","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.knosys.2016.06.009","article-title":"Aspect extraction for opinion mining with a deep convolutional neural network","volume":"108","author":"Poria","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.06.035_b13","doi-asserted-by":"crossref","unstructured":"D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, B. Qin, Learning sentiment-specific word embedding for Twitter sentiment classification, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014, pp. 1555\u20131565.","DOI":"10.3115\/v1\/P14-1146"},{"key":"10.1016\/j.knosys.2019.06.035_b14","unstructured":"T. Mikolov, W.T. Yih, G. Zweig, Linguistic regularities in continuous space word representations, in: Proceedings of the Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, 2013, pp. 746\u2013751."},{"key":"10.1016\/j.knosys.2019.06.035_b15","doi-asserted-by":"crossref","unstructured":"J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1532\u20131543.","DOI":"10.3115\/v1\/D14-1162"},{"key":"10.1016\/j.knosys.2019.06.035_b16","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1016\/j.neucom.2017.09.080","article-title":"Textual sentiment analysis via three different attention convolutional neural networks and cross-modality compriseent regression","volume":"275","author":"Zhang","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.06.035_b17","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.knosys.2017.03.020","article-title":"Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis","volume":"125","author":"Akhtar","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.06.035_b18","doi-asserted-by":"crossref","first-page":"21265","DOI":"10.1007\/s11042-017-5529-5","article-title":"Generate specific sentiment lexicon for review sentiment analysis","volume":"77","author":"Han","year":"2018","journal-title":"Multimedia Tool Appl."},{"key":"10.1016\/j.knosys.2019.06.035_b19","unstructured":"Vo.D.\u00a0T. Feng, Y. Zhang, Target-Dependent Twitter sentiment classification with rich automatic features, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015, pp. 1347\u20131353."},{"key":"10.1016\/j.knosys.2019.06.035_b20","unstructured":"D. Tang, B. Qin, X. Feng, et al. Effective LSTMs for target-dependent sentiment classification, in: Proceedings of the 26th International Conference on Computational Linguistics, 2016, pp. 3298\u20133307."},{"key":"10.1016\/j.knosys.2019.06.035_b21","doi-asserted-by":"crossref","unstructured":"M. Zhang, Y. Zhang, Vo.D.\u00a0T. Feng, Gated neural networks for targeted sentiment analysis, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 3087\u20133093.","DOI":"10.1609\/aaai.v30i1.10380"},{"key":"10.1016\/j.knosys.2019.06.035_b22","doi-asserted-by":"crossref","unstructured":"J. Liu, Y. Zhang, J. Liu, et al. Attention modeling for targeted sentiment, in: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017, pp. 572\u2013577.","DOI":"10.18653\/v1\/E17-2091"},{"key":"10.1016\/j.knosys.2019.06.035_b23","doi-asserted-by":"crossref","unstructured":"B. Wang, W. Lu, Learning latent opinions for aspect-level sentiment classification, in: Proceedings of the 32th AAAI Conference on Artificial Intelligence, 2018, pp. 5537\u20135544.","DOI":"10.1609\/aaai.v32i1.12020"},{"key":"10.1016\/j.knosys.2019.06.035_b24","doi-asserted-by":"crossref","unstructured":"D. Tang, B. Qin, T. Liu, Aspect level sentiment classification with deep memory network, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 214\u2013224.","DOI":"10.18653\/v1\/D16-1021"},{"key":"10.1016\/j.knosys.2019.06.035_b25","doi-asserted-by":"crossref","unstructured":"P. Chen, Z. Sun, L. Bing, W. Yang, Recurrent attention network on memory for aspect sentiment analysis, in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017, pp. 453\u2013461.","DOI":"10.18653\/v1\/D17-1047"},{"key":"10.1016\/j.knosys.2019.06.035_b26","doi-asserted-by":"crossref","unstructured":"X. Wang, L. Wang, A. Hawbani, et al. Aspect level sentiment classification with memory network using word sentiment vectors and a new attention mechanism AM-PPOSC, in: Proceedings of the 20th IEEE International Conference on High Performance Computing and Communications, 2018, pp. 1058\u20131063.","DOI":"10.1109\/HPCC\/SmartCity\/DSS.2018.00176"},{"key":"10.1016\/j.knosys.2019.06.035_b27","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.neucom.2018.04.068","article-title":"The optimally designed dynamic memory networks for targeted sentiment classification","volume":"309","author":"Zhang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.06.035_b28","doi-asserted-by":"crossref","unstructured":"L. Wang, Z. Cao, G.D. Melo, Relation classification via multi-level attention CNNs, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016, pp. 1298\u20131307.","DOI":"10.18653\/v1\/P16-1123"},{"key":"10.1016\/j.knosys.2019.06.035_b29","doi-asserted-by":"crossref","unstructured":"X. Li, L. Bing, W. Lam, B. Shi, Transformation networks for target-oriented sentiment classification, in: Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2018, pp. 946\u2013956.","DOI":"10.18653\/v1\/P18-1087"},{"key":"10.1016\/j.knosys.2019.06.035_b30","doi-asserted-by":"crossref","unstructured":"B. Shin, T. Lee, J.D. Choi, Lexicon integrated CNN models with attention for sentiment analysis, in: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity: Sentiment and Social Media Analysis, WASSA@EMNLP, 2017, pp. 149\u2013158.","DOI":"10.18653\/v1\/W17-5220"},{"key":"10.1016\/j.knosys.2019.06.035_b31","unstructured":"Y. Fisher, V. Koltun, Multi-scale context aggregation by dilated convolutions. https:\/\/arxiv.org\/abs\/1511.07122."},{"key":"10.1016\/j.knosys.2019.06.035_b32","unstructured":"L. Kaiser, A.N. Gomez, F. Chollet, Depthwise separable convolutions for neural machine translation. https:\/\/arxiv.org\/abs\/1706.03059."},{"key":"10.1016\/j.knosys.2019.06.035_b33","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.patcog.2017.11.016","article-title":"Infrared small-dim target detection based on Markov random field guided noise modeling","volume":"76","author":"Gao","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2019.06.035_b34","doi-asserted-by":"crossref","unstructured":"E. Loper, S. Bird, NLTK: the Natural Language Toolkit, in: Proceedings of Association for Computational Linguistics Workshop on Effective TOOLS and Methodologies for Teaching Natural Language Processing and Computational Linguistics, 2002, pp. 63\u201370.","DOI":"10.3115\/1118108.1118117"},{"key":"10.1016\/j.knosys.2019.06.035_b35","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, in: Proceedings of IEEE International Conference on Computer Vision, 2016, pp. 1026\u20131034.","DOI":"10.1109\/ICCV.2015.123"},{"key":"10.1016\/j.knosys.2019.06.035_b36","unstructured":"S. Baccianella, A. Esuli, F. Sebastiani, SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, in: Proceedings of the 7th International Conference on Language Resources and Evaluation, 2010, pp. 2200\u20132204."},{"key":"10.1016\/j.knosys.2019.06.035_b37","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.knosys.2018.01.023","article-title":"A visual framework for dynamic emotional web analysis","volume":"145","author":"Diego","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.06.035_b38","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1016\/j.physa.2018.06.063","article-title":"A visual framework for dynamic emotional web analysis","volume":"509","author":"Yi","year":"2018","journal-title":"Physica A."},{"key":"10.1016\/j.knosys.2019.06.035_b39","doi-asserted-by":"crossref","unstructured":"J.\u00a0K. Raulji, J.\u00a0R. Saini, Generating stopword list for sanskrit language, in: Proceedings of 2017 IEEE 7th International Advance Computing Conference, 2017, pp. 799\u2013802.","DOI":"10.1109\/IACC.2017.0164"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119303028?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119303028?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T19:42:16Z","timestamp":1663875736000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705119303028"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":39,"alternative-id":["S0950705119303028"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2019.06.035","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2019.06.035","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104827"}}