{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T07:16:57Z","timestamp":1725520617519},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11471010"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005236","name":"Chinese Universities Scientific Fund","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005236","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.knosys.2019.06.014","type":"journal-article","created":{"date-parts":[[2019,6,21]],"date-time":"2019-06-21T17:06:31Z","timestamp":1561136791000},"page":"104806","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Twin minimax probability extreme learning machine for pattern recognition"],"prefix":"10.1016","volume":"187","author":[{"given":"Jun","family":"Ma","sequence":"first","affiliation":[]},{"given":"Liming","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yakun","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Qun","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.knosys.2019.06.014_b1","first-page":"192","article-title":"Minimax probability machine","volume":"37","author":"Lanckriet","year":"2001","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"15","key":"10.1016\/j.knosys.2019.06.014_b2","doi-asserted-by":"crossref","first-page":"1995","DOI":"10.1016\/j.patrec.2007.05.021","article-title":"A comparative study of minimax probability machine-based approaches for face recognition","volume":"28","author":"Ng","year":"2007","journal-title":"Pattern Recognit. Lett."},{"issue":"20","key":"10.1016\/j.knosys.2019.06.014_b3","first-page":"265","article-title":"Short-term photovoltaic power forecasting for photovoltaic power station based on ewt-kmpmr","volume":"33","author":"Li","year":"2017","journal-title":"Trans. Chin. Soci. Agric. Eng."},{"issue":"2","key":"10.1016\/j.knosys.2019.06.014_b4","first-page":"1","article-title":"Dynamic minimax probability machine-based approach for fault diagnosis using pairwise discriminate analysis","volume":"27","author":"Jiang","year":"2017","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"6","key":"10.1016\/j.knosys.2019.06.014_b5","first-page":"493","article-title":"A new minimax probabilistic approach and its application in recognition the purity of hybrid seeds","volume":"104","author":"Yang","year":"2015","journal-title":"CMES Comput. Model. Eng. Sci."},{"key":"10.1016\/j.knosys.2019.06.014_b6","series-title":"International Conference on Neural Information Processing Systems","first-page":"905","article-title":"Robust novelty detection with single-class MPM","author":"Lanckriet","year":"2002"},{"key":"10.1016\/j.knosys.2019.06.014_b7","first-page":"9","article-title":"A formulation for minimax probability machine regression","volume":"76","author":"Strohmann","year":"2003","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2019.06.014_b8","first-page":"1253","article-title":"The minimum error minimax probability machine","volume":"5","author":"Huang","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"7","key":"10.1016\/j.knosys.2019.06.014_b9","doi-asserted-by":"crossref","first-page":"1646","DOI":"10.1109\/TNNLS.2016.2544779","article-title":"Structural minimax probability machine","volume":"28","author":"Gu","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2019.06.014_b10","series-title":"Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on","article-title":"Learning classifiers from imbalanced data based on biased minimax probability machine","author":"Huang","year":"2004"},{"issue":"1","key":"10.1016\/j.knosys.2019.06.014_b11","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1109\/TSMC.2016.2563395","article-title":"Dimension reduction by minimum error minimax probability machine","volume":"47","author":"Song","year":"2017","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"issue":"6","key":"10.1016\/j.knosys.2019.06.014_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10994-016-5616-2","article-title":"High-probability minimax probability machines","volume":"106","author":"Cousins","year":"2017","journal-title":"Mach. Learn."},{"issue":"37","key":"10.1016\/j.knosys.2019.06.014_b13","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.patrec.2013.01.004","article-title":"Laplacian minimax probability machine","volume":"37","author":"Yoshiyama","year":"2014","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2019.06.014_b14","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","year":"1995"},{"key":"10.1016\/j.knosys.2019.06.014_b15","series-title":"Statistical Learning Theory","author":"Vapnik","year":"1998"},{"issue":"5","key":"10.1016\/j.knosys.2019.06.014_b16","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1109\/TPAMI.2007.1068","article-title":"Twin support vector machines for pattern classification","volume":"29","author":"Jayadeva\u00a0Khemchandani","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"20","key":"10.1016\/j.knosys.2019.06.014_b17","doi-asserted-by":"crossref","first-page":"3863","DOI":"10.1016\/j.ins.2010.06.039","article-title":"A \u03bd-twin support vector machine ( \u03bd-TSVM) classifier and its geometric algorithms","volume":"180","author":"Peng","year":"2010","journal-title":"Inform. Sci."},{"issue":"6","key":"10.1016\/j.knosys.2019.06.014_b18","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1109\/TNN.2011.2130540","article-title":"Improvements on twin support vector machines","volume":"22","author":"Shao","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"issue":"11","key":"10.1016\/j.knosys.2019.06.014_b19","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.neunet.2012.07.011","article-title":"Laplacian twin support vector machine for semi-supervised classification","volume":"35","author":"Qi","year":"2012","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.knosys.2019.06.014_b20","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.patcog.2012.06.019","article-title":"Robust twin support vector machine for pattern classification","volume":"46","author":"Qi","year":"2013","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.knosys.2019.06.014_b21","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.knosys.2013.01.008","article-title":"Structural twin support vector machine for classification","volume":"43","author":"Qi","year":"2013","journal-title":"Knowl.-Based Syst."},{"issue":"49","key":"10.1016\/j.knosys.2019.06.014_b22","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.knosys.2013.04.013","article-title":"Structural twin parametric-margin support vector machine for binary classification","volume":"49","author":"Peng","year":"2013","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.knosys.2019.06.014_b23","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","article-title":"Extreme learning machine for regression and multiclass classification","volume":"42","author":"Huang","year":"2012","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"key":"10.1016\/j.knosys.2019.06.014_b24","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.enconman.2018.07.070","article-title":"A nonlinear hybrid wind speed forecasting model using lstm network, hysteretic elm and differential evolution algorithm","volume":"173","author":"Ya-Lan","year":"2018","journal-title":"Energy Convers. Manage."},{"issue":"2","key":"10.1016\/j.knosys.2019.06.014_b25","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neucom.2011.12.045","article-title":"Robust extreme learning machine","volume":"102","author":"Horata","year":"2013","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.knosys.2019.06.014_b26","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1109\/TCYB.2015.2399420","article-title":"Robust extreme learning machine with its application to indoor positioning","volume":"46","author":"Lu","year":"2016","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.knosys.2019.06.014_b27","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1007\/s00521-015-1874-3","article-title":"Self-adaptive extreme learning machine","volume":"27","author":"Wang","year":"2016","journal-title":"Neural Comput. Appl."},{"issue":"C","key":"10.1016\/j.knosys.2019.06.014_b28","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.patcog.2016.04.003","article-title":"Memetic extreme learning machine","volume":"58","author":"Zhang","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2019.06.014_b29","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.neucom.2017.04.036","article-title":"Twin extreme learning machines for pattern classification","volume":"260","author":"Wan","year":"2017","journal-title":"Neurocomputing"},{"issue":"12","key":"10.1016\/j.knosys.2019.06.014_b30","doi-asserted-by":"crossref","first-page":"2405","DOI":"10.1109\/TCYB.2014.2307349","article-title":"Semi-supervised and unsupervised extreme learning machines","volume":"44","author":"Huang","year":"2014","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.knosys.2019.06.014_b31","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.knosys.2018.06.029","article-title":"Robust semi-supervised extreme learning machine","volume":"159","author":"Pei","year":"2018","journal-title":"Knowl.-Based Syst."},{"issue":"4","key":"10.1016\/j.knosys.2019.06.014_b32","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1214\/aoms\/1177705673","article-title":"Multivariate chebyshev inequalities","volume":"31","author":"Marshall","year":"1960","journal-title":"Ann. Math. Stat."},{"issue":"1\u20134","key":"10.1016\/j.knosys.2019.06.014_b33","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1080\/10556789908805766","article-title":"Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones","volume":"11","author":"Sturm","year":"1999","journal-title":"Optim. Methods Softw."},{"key":"10.1016\/j.knosys.2019.06.014_b34","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.neucom.2015.02.051","article-title":"Design of fractional order pid controller for automatic regulator voltage system based on multi-objective extremal optimization","volume":"160","author":"Zeng","year":"2015","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.knosys.2019.06.014_b35","doi-asserted-by":"crossref","first-page":"2197","DOI":"10.1016\/j.jfranklin.2017.12.034","article-title":"Design of PID controller based on a self-adaptive state-space predictive functional control using extremal optimization method","volume":"355","author":"Kangdi","year":"2018","journal-title":"J. Franklin Inst. B"},{"key":"10.1016\/j.knosys.2019.06.014_b36","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.ijepes.2018.08.043","article-title":"Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system","volume":"105","author":"Kangdi","year":"2019","journal-title":"Int. J. Electr. Power Energy Syst."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119302813?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119302813?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,18]],"date-time":"2019-11-18T02:50:27Z","timestamp":1574045427000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705119302813"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":36,"alternative-id":["S0950705119302813"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2019.06.014","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Twin minimax probability extreme learning machine for pattern recognition","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2019.06.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104806"}}