{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T14:04:17Z","timestamp":1726495457581},"reference-count":27,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.knosys.2018.07.009","type":"journal-article","created":{"date-parts":[[2018,7,31]],"date-time":"2018-07-31T01:57:27Z","timestamp":1533002247000},"page":"28-33","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["SurvELM: An R package for high dimensional survival analysis with extreme learning machine"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6938-9507","authenticated-orcid":false,"given":"Hong","family":"Wang","sequence":"first","affiliation":[]},{"given":"Lifeng","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.knosys.2018.07.009_bib0001","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1177\/0962280209105024","article-title":"Survival analysis with high-dimensional covariates","volume":"19","author":"Witten","year":"2010","journal-title":"Stat. Methods Med. Res."},{"issue":"4","key":"10.1016\/j.knosys.2018.07.009_bib0002","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1002\/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3","article-title":"The lasso method for variable selection in the cox model","volume":"16","author":"Tibshirani","year":"1997","journal-title":"Stat. Med."},{"issue":"13","key":"10.1016\/j.knosys.2018.07.009_bib0003","doi-asserted-by":"crossref","first-page":"3001","DOI":"10.1093\/bioinformatics\/bti422","article-title":"Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data","volume":"21","author":"Gui","year":"2005","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.knosys.2018.07.009_bib0004","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1002\/bimj.200900064","article-title":"High-dimensional cox models: the choice of penalty as part of the model building process","volume":"52","author":"Benner","year":"2010","journal-title":"Biom. J."},{"issue":"3","key":"10.1016\/j.knosys.2018.07.009_bib0005","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1214\/08-AOAS169","article-title":"Random survival forests","volume":"2","author":"Ishwaran","year":"2008","journal-title":"Ann. Appl. Stat."},{"key":"10.1016\/j.knosys.2018.07.009_bib0006","series-title":"Machine Learning for Healthcare Conference, Los Angeles","first-page":"101","article-title":"Deep survival analysis","author":"Ranganath","year":"2016"},{"issue":"3","key":"10.1016\/j.knosys.2018.07.009_bib0007","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/BF01840841","article-title":"A practical application of neural network analysis for predicting outcome of individual breast cancer patients","volume":"22","author":"Ravdin","year":"1992","journal-title":"Breast Cancer Res. Treat."},{"issue":"1","key":"10.1016\/j.knosys.2018.07.009_bib0008","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1002\/sim.4780140108","article-title":"A neural network model for survival data.","volume":"14","author":"Faraggi","year":"1995","journal-title":"Stat. Med."},{"issue":"10","key":"10.1016\/j.knosys.2018.07.009_bib0009","doi-asserted-by":"crossref","first-page":"1169","DOI":"10.1002\/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D","article-title":"Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach","volume":"17","author":"Biganzoli","year":"1998","journal-title":"Stat. Med."},{"issue":"5\u20136","key":"10.1016\/j.knosys.2018.07.009_bib0010","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1016\/S0893-6080(03)00098-4","article-title":"A novel neural network-based survival analysis model","volume":"16","author":"Eleuteri","year":"2003","journal-title":"Neural Netw."},{"issue":"9","key":"10.1016\/j.knosys.2018.07.009_bib0011","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1109\/TNN.2009.2023654","article-title":"Partial logistic artificial neural network for competing risks regularized with automatic relevance determination","volume":"20","author":"Lisboa","year":"2009","journal-title":"IEEE Trans. Neural Netw."},{"issue":"20","key":"10.1016\/j.knosys.2018.07.009_bib0012","doi-asserted-by":"crossref","first-page":"3173","DOI":"10.1093\/bioinformatics\/btx408","article-title":"Partitioned learning of deep Boltzmann machines for SNP data","volume":"33","author":"Hess","year":"2017","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.knosys.2018.07.009_bib0013","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-017-11817-6","article-title":"Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models","volume":"7","author":"Yousefi","year":"2017","journal-title":"Sci. Rep."},{"issue":"7553","key":"10.1016\/j.knosys.2018.07.009_bib0014","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.knosys.2018.07.009_bib0015","unstructured":"J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, Recent advances in convolutional neural networks, arXiv preprint arXiv:1512.07108 (2015)."},{"key":"10.1016\/j.knosys.2018.07.009_bib0016","series-title":"Proceedings of the 24th European symposium on artificial neural networks (ESANN)","first-page":"489","article-title":"Challenges in deep learning","author":"Angelov","year":"2016"},{"issue":"2","key":"10.1016\/j.knosys.2018.07.009_bib0017","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","article-title":"Extreme learning machine for regression and multiclass classification","volume":"42","author":"Huang","year":"2012","journal-title":"IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)"},{"issue":"7","key":"10.1016\/j.knosys.2018.07.009_bib0018","doi-asserted-by":"crossref","first-page":"1846","DOI":"10.1007\/s10489-017-1063-4","article-title":"A survival ensemble of extreme learning machine","volume":"48","author":"Wang","year":"2018","journal-title":"Appl. Intell."},{"key":"10.1016\/j.knosys.2018.07.009_bib0019","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1093\/biomet\/66.3.429","article-title":"Linear regression with censored data","author":"Buckley","year":"1979","journal-title":"Biometrika"},{"issue":"5","key":"10.1016\/j.knosys.2018.07.009_bib0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v039.i05","article-title":"Regularization paths for cox\u2019s proportional hazards model via coordinate descent","volume":"39","author":"Simon","year":"2011","journal-title":"J. Stat. Softw."},{"issue":"1","key":"10.1016\/j.knosys.2018.07.009_bib0021","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"22","key":"10.1016\/j.knosys.2018.07.009_bib0022","doi-asserted-by":"crossref","first-page":"2828","DOI":"10.1093\/bioinformatics\/btl462","article-title":"Model-based boosting in high dimensions","volume":"22","author":"Hothorn","year":"2006","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.knosys.2018.07.009_bib0023","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1186\/1471-2105-9-14","article-title":"Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models","volume":"9","author":"Binder","year":"2008","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.knosys.2018.07.009_bib0024","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1002\/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4","article-title":"Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors","volume":"15","author":"Harrell","year":"1996","journal-title":"Stat. Med."},{"key":"10.1016\/j.knosys.2018.07.009_bib0025","unstructured":"J. Katzman, U. Shaham, J. Bates, A. Cloninger, T. Jiang, Y. Kluger, Deep survival: a deep cox proportional hazards network, arXiv preprint arXiv:1606.00931 (2016)."},{"key":"10.1016\/j.knosys.2018.07.009_bib0026","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/j.eswa.2016.07.018","article-title":"On the use of harrell c for clinical risk prediction via random survival forests","volume":"63","author":"Schmid","year":"2016","journal-title":"Expert Syst. Appl."},{"issue":"8","key":"10.1016\/j.knosys.2018.07.009_bib0027","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1002\/sim.7212","article-title":"Unbiased split variable selection for random survival forests using maximally selected rank statistics","volume":"36","author":"Wright","year":"2017","journal-title":"Stat. Med."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705118303447?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705118303447?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,12]],"date-time":"2018-09-12T18:55:39Z","timestamp":1536778539000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705118303447"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":27,"alternative-id":["S0950705118303447"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2018.07.009","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SurvELM: An R package for high dimensional survival analysis with extreme learning machine","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2018.07.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}