{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T07:13:28Z","timestamp":1726298008851},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61272194","KJZH17104"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.knosys.2017.01.013","type":"journal-article","created":{"date-parts":[[2017,1,9]],"date-time":"2017-01-09T03:45:20Z","timestamp":1483933520000},"page":"32-40","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":73,"special_numbering":"C","title":["A novel outlier cluster detection algorithm without top-n parameter"],"prefix":"10.1016","volume":"121","author":[{"given":"Jinlong","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7737-9966","authenticated-orcid":false,"given":"Qingsheng","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Lijun","family":"Yang","sequence":"additional","affiliation":[]},{"given":"DongDong","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Quanwang","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2017.01.013_bib0001","series-title":"Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","article-title":"Mining top-n local outliers in large databases","author":"Jin","year":"2001"},{"key":"10.1016\/j.knosys.2017.01.013_bib0002","series-title":"Data Mining: Concepts and Techniques","author":"Han","year":"2011"},{"key":"10.1016\/j.knosys.2017.01.013_bib0003","series-title":"Library of Congress","article-title":"Introduction to data mining","author":"Pang-Ning","year":"2006"},{"key":"10.1016\/j.knosys.2017.01.013_bib0004","series-title":"KDD","article-title":"A unified notion of outliers: Properties and computation","author":"Knorr","year":"1997"},{"issue":"3\u20134","key":"10.1016\/j.knosys.2017.01.013_bib0005","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1007\/s007780050006","article-title":"Distance-based outliers: algorithms and applications","volume":"8","author":"Knorr","year":"2000","journal-title":"VLDB J. Int. J. Very Large Data Bases"},{"key":"10.1016\/j.knosys.2017.01.013_bib0006","series-title":"A Tour of Spatial Databases","author":"Shekhar","year":"2002"},{"key":"10.1016\/j.knosys.2017.01.013_bib0007","series-title":"Identification of Outliers","volume":"11","author":"Hawkins","year":"1980"},{"key":"10.1016\/j.knosys.2017.01.013_bib0008","series-title":"Outliers in Statistical Data","volume":"3","author":"Barnett","year":"1994"},{"issue":"1","key":"10.1016\/j.knosys.2017.01.013_bib0009","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/S0167-9473(96)00027-8","article-title":"Computing depth contours of bivariate point clouds","volume":"23","author":"Ruts","year":"1996","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.knosys.2017.01.013_sbref0010","series-title":"KDD","article-title":"Fast computation of 2-dimensional depth contours","author":"Johnson","year":"1998"},{"key":"10.1016\/j.knosys.2017.01.013_sbref0011","series-title":"Proceedings of the International Conference on Very Large Data Bases","article-title":"Algorithms for mining distancebased outliers in large datasets","author":"Knox","year":"1998"},{"key":"10.1016\/j.knosys.2017.01.013_bib0012","series-title":"ACM Sigmod Record","article-title":"LOF: Identifying density-based local outliers","author":"Breunig","year":"2000"},{"key":"10.1016\/j.knosys.2017.01.013_bib0013","series-title":"Advances in Knowledge Discovery and Data Mining","first-page":"577","article-title":"Ranking outliers using symmetric neighborhood relationship","author":"Jin","year":"2006"},{"key":"10.1016\/j.knosys.2017.01.013_bib0014","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.knosys.2014.03.001","article-title":"Robust outlier detection using the instability factor","volume":"63","author":"Ha","year":"2014","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2017.01.013_bib0015","first-page":"027","article-title":"Clustering algorithm of outliers based on adjacency graph","volume":"11","author":"Jin","year":"2008","journal-title":"Comput. Eng."},{"key":"10.1016\/j.knosys.2017.01.013_bib0016","article-title":"A non-parameter outlier detection algorithm based on natural neighbor","author":"Huang","year":"2015","journal-title":"Knowl. Based Syst."},{"issue":"6","key":"10.1016\/j.knosys.2017.01.013_bib0018","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1016\/S0167-8655(00)00131-8","article-title":"Two-phase clustering process for outliers detection","volume":"22","author":"Jiang","year":"2001","journal-title":"Pattern Recognit. Lett."},{"issue":"4","key":"10.1016\/j.knosys.2017.01.013_bib0019","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1007\/s101150200013","article-title":"Findout: finding outliers in very large datasets","volume":"4","author":"Yu","year":"2002","journal-title":"Knowl. Inf. Syst."},{"issue":"9","key":"10.1016\/j.knosys.2017.01.013_bib0020","doi-asserted-by":"crossref","first-page":"1641","DOI":"10.1016\/S0167-8655(03)00003-5","article-title":"Discovering cluster-based local outliers","volume":"24","author":"He","year":"2003","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.knosys.2017.01.013_bib0021","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10479-008-0371-9","article-title":"Cluster-based outlier detection","volume":"168","author":"Duan","year":"2009","journal-title":"Ann. Oper. Res."},{"issue":"3","key":"10.1016\/j.knosys.2017.01.013_bib0022","first-page":"59","article-title":"An efficient outlier detection algorithms based on data clustering over massive data","volume":"31","author":"Min","year":"2015","journal-title":"Database Res."},{"issue":"512","key":"10.1016\/j.knosys.2017.01.013_bib0023","doi-asserted-by":"crossref","first-page":"1543","DOI":"10.1080\/01621459.2014.983231","article-title":"A cluster-based outlier detection scheme for multivariate data","volume":"110","author":"Jobe","year":"2015","journal-title":"J. Am. Stat. Assoc."},{"issue":"7","key":"10.1016\/j.knosys.2017.01.013_bib0024","doi-asserted-by":"crossref","first-page":"978","DOI":"10.1016\/j.is.2006.10.006","article-title":"A local-density based spatial clustering algorithm with noise","volume":"32","author":"Duan","year":"2007","journal-title":"Inf. Syst."},{"key":"10.1016\/j.knosys.2017.01.013_bib0025","series-title":"Advanced Materials Research.","article-title":"A data stream outlier detection algorithm based on reverse k nearest neighbors","author":"Zhang","year":"2011"},{"issue":"1","key":"10.1016\/j.knosys.2017.01.013_bib0026","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/S0167-7152(96)00213-1","article-title":"Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection","volume":"35","author":"Brito","year":"1997","journal-title":"Stat. Probab. Lett."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705117300254?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705117300254?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,4]],"date-time":"2022-07-04T13:24:03Z","timestamp":1656941043000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705117300254"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":25,"alternative-id":["S0950705117300254"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2017.01.013","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel outlier cluster detection algorithm without top-n parameter","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2017.01.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}