{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T11:51:05Z","timestamp":1721303465030},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003329","name":"MINECO","doi-asserted-by":"publisher","award":["TIN2013-46638-C3-3-P"],"id":[{"id":"10.13039\/501100003329","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003176","name":"MECD","doi-asserted-by":"publisher","award":["FPU13\/00202"],"id":[{"id":"10.13039\/501100003176","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2017,2]]},"DOI":"10.1016\/j.knosys.2016.06.013","type":"journal-article","created":{"date-parts":[[2016,6,27]],"date-time":"2016-06-27T02:38:52Z","timestamp":1466995132000},"page":"16-26","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Learning distributed discrete Bayesian Network Classifiers under MapReduce with Apache Spark"],"prefix":"10.1016","volume":"117","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2557-0432","authenticated-orcid":false,"given":"Jacinto","family":"Arias","sequence":"first","affiliation":[]},{"given":"Jose A.","family":"Gamez","sequence":"additional","affiliation":[]},{"given":"Jose M.","family":"Puerta","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2016.06.013_sbref0001","series-title":"Technical Report","article-title":"Big Data: The Next Frontier for Innovation, Competition, and Productivity","author":"Manyika","year":"2011"},{"issue":"10","key":"10.1016\/j.knosys.2016.06.013_bib0002","first-page":"61","article-title":"Big data, the management revolution","volume":"90","author":"McAfee","year":"2012","journal-title":"Harvard Bus. Rev."},{"key":"10.1016\/j.knosys.2016.06.013_bib0003","series-title":"Big Data: Related Technologies, Challenges and Future Prospects","author":"Chen","year":"2014"},{"key":"10.1016\/j.knosys.2016.06.013_bib0004","first-page":"1","article-title":"MapReduce: simplified data processing on large clusters","author":"Dean","year":"2008","journal-title":"Commun. ACM"},{"key":"10.1016\/j.knosys.2016.06.013_bib0005","unstructured":"S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action (2011)."},{"key":"10.1016\/j.knosys.2016.06.013_bib0006","series-title":"Hadoop: The Definitive Guide","author":"White","year":"2012"},{"key":"10.1016\/j.knosys.2016.06.013_bib0007","article-title":"Spark: cluster computing with working sets.","volume":"10","author":"Zaharia","year":"2010","journal-title":"HotCloud"},{"key":"10.1016\/j.knosys.2016.06.013_bib0008","unstructured":"X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, et\u00a0al., Mllib: Machine Learning in Apache Spark, arXiv:1505.06807(2015)."},{"issue":"1","key":"10.1016\/j.knosys.2016.06.013_bib0009","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2576868","article-title":"Discrete Bayesian network classifiers","volume":"47","author":"Bielza","year":"2014","journal-title":"ACM Comput. Surv."},{"issue":"1","key":"10.1016\/j.knosys.2016.06.013_bib0010","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","article-title":"The weka data mining software: an update","volume":"11","author":"Hall","year":"2009","journal-title":"ACM SIGKDD Explor. Newsl."},{"issue":"3","key":"10.1016\/j.knosys.2016.06.013_bib0011","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1109\/MCI.2014.2326099","article-title":"The emerging \u201dbig dimensionality\u201d","volume":"9","author":"Zhai","year":"2014","journal-title":"Comput. Intell. Mag., IEEE"},{"key":"10.1016\/j.knosys.2016.06.013_bib0012","first-page":"70","article-title":"3D data management: controlling data volume, velocity and variety","volume":"6","author":"Laney","year":"2001","journal-title":"META Group Res. Note"},{"key":"10.1016\/j.knosys.2016.06.013_bib0013","series-title":"Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference","author":"Pearl","year":"2014"},{"key":"10.1016\/j.knosys.2016.06.013_bib0014","series-title":"Bayesian Networks and Decision Graphs","author":"Nielsen","year":"2009"},{"issue":"2-3","key":"10.1016\/j.knosys.2016.06.013_bib0015","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1023\/A:1007465528199","article-title":"Bayesian network classifiers","volume":"29","author":"Friedman","year":"1997","journal-title":"Mach. Learn."},{"issue":"2-3","key":"10.1016\/j.knosys.2016.06.013_bib0016","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1023\/A:1007413511361","article-title":"On the optimality of the simple Bayesian classifier under zero-one loss","volume":"29","author":"Domingos","year":"1997","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2016.06.013_bib0017","series-title":"IJCAI Workshop on Empirical Methods in Artificial Intelligence","first-page":"41","article-title":"An empirical study of the naive Bayes classifier","volume":"3","author":"Rish","year":"2001"},{"key":"10.1016\/j.knosys.2016.06.013_bib0018","series-title":"Second International Conference on Knowledge Discovery and Data Mining","first-page":"91","article-title":"Learning limited dependence Bayesian classifiers","author":"Sahami","year":"1996"},{"issue":"1","key":"10.1016\/j.knosys.2016.06.013_bib0019","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s10994-005-4258-6","article-title":"Not so naive Bayes: aggregating one-dependence estimators","volume":"58","author":"Webb","year":"2005","journal-title":"Mach. Learn."},{"issue":"2","key":"10.1016\/j.knosys.2016.06.013_bib0020","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1007\/s10994-011-5263-6","article-title":"Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification","volume":"86","author":"Webb","year":"2011","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2016.06.013_bib0021","series-title":"Mining of Massive Datasets","volume":"1","author":"Rajaraman","year":"2012"},{"key":"10.1016\/j.knosys.2016.06.013_bib0022","series-title":"Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on","first-page":"1","article-title":"The hadoop distributed file system","author":"Shvachko","year":"2010"},{"key":"10.1016\/j.knosys.2016.06.013_bib0023","series-title":"Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation","article-title":"Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing","author":"Zaharia","year":"2012"},{"key":"10.1016\/j.knosys.2016.06.013_bib0024","series-title":"Trustcom\/BigDataSE\/ISPA, 2015 IEEE","first-page":"25","article-title":"Scalable learning of k-dependence Bayesian classifiers under mapreduce","volume":"2","author":"Arias","year":"2015"},{"key":"10.1016\/j.knosys.2016.06.013_bib0025","first-page":"302","article-title":"A new method for vertical parallelisation of TAN learning based on balanced incomplete block designs","volume":"8754","author":"Madsen","year":"2014","journal-title":"Lect. Notes in Artif. Intell."},{"issue":"4","key":"10.1016\/j.knosys.2016.06.013_bib0026","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/j.ijar.2012.09.004","article-title":"Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes","volume":"54","author":"Alonso-Barba","year":"2013","journal-title":"Int. J. Approx. Reas."},{"key":"10.1016\/j.knosys.2016.06.013_bib0027","series-title":"Proceedings of the 27th International Conference on Machine Learning (ICML-10)","first-page":"999","article-title":"COFFIN: a computational framework for linear SVMs","author":"Sonnenburg","year":"2010"},{"issue":"19","key":"10.1016\/j.knosys.2016.06.013_bib0028","doi-asserted-by":"crossref","first-page":"2441","DOI":"10.1093\/bioinformatics\/bts472","article-title":"Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features","volume":"28","author":"Bacardit","year":"2012","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.knosys.2016.06.013_bib0029","first-page":"1999","article-title":"An improved glmnet for l1-regularized logistic regression","volume":"13","author":"Yuan","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2016.06.013_bib0030","first-page":"1601","article-title":"MOA: massive online analysis","volume":"11","author":"Bifet","year":"2010","journal-title":"J. Mach. Learn. Res."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705116301769?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705116301769?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,10]],"date-time":"2018-09-10T19:28:58Z","timestamp":1536607738000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705116301769"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,2]]},"references-count":30,"alternative-id":["S0950705116301769"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2016.06.013","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2017,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Learning distributed discrete Bayesian Network Classifiers under MapReduce with Apache Spark","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2016.06.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}