{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T06:49:36Z","timestamp":1720507776453},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2012,11,1]],"date-time":"2012-11-01T00:00:00Z","timestamp":1351728000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2012,11]]},"DOI":"10.1016\/j.knosys.2012.04.022","type":"journal-article","created":{"date-parts":[[2012,4,28]],"date-time":"2012-04-28T19:19:03Z","timestamp":1335640743000},"page":"361-368","source":"Crossref","is-referenced-by-count":25,"special_numbering":"C","title":["Selective Subsequence Time Series clustering"],"prefix":"10.1016","volume":"35","author":[{"given":"Sura","family":"Rodpongpun","sequence":"first","affiliation":[]},{"given":"Vit","family":"Niennattrakul","sequence":"additional","affiliation":[]},{"given":"Chotirat Ann","family":"Ratanamahatana","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2012.04.022_b0005","doi-asserted-by":"crossref","unstructured":"G.E.A.P.A. Batista, X. Wang, E.J. Keogh, A complexity-invariant distance measure for time series, in: Proceedings of the 2011 SIAM International Conference on Data Mining (SDM\u201911), Arizona, USA, 2011, pp. 699\u2013710.","DOI":"10.1137\/1.9781611972818.60"},{"key":"10.1016\/j.knosys.2012.04.022_b0010","unstructured":"J.R. Chen, Making subsequence time series clustering meaningful, in: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM\u201905). Texas, USA, 2005, pp. 114\u2013121."},{"key":"10.1016\/j.knosys.2012.04.022_b0015","doi-asserted-by":"crossref","unstructured":"P. Cotofrei, K. Stoffel, Classification rules + time=temporal rules, in: Proceedings of 2002 International Conference on Computational Science, Amsterdam, Netherlands, 2002, pp. 572\u2013581.","DOI":"10.1007\/3-540-46043-8_58"},{"key":"10.1016\/j.knosys.2012.04.022_b0020","unstructured":"G. Das, K. Lin, H. Mannila, G. Renganathan, P. Smyth. Rule discovery from time series, in: 4th International Conference on Knowledge Discovery and Data Mining (KDD\u201998). New York, USA, 1998, pp. 16\u201322."},{"issue":"4","key":"10.1016\/j.knosys.2012.04.022_b0025","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/j.knosys.2011.01.001","article-title":"A class of hybrid morphological perceptrons with application in time series forecasting","volume":"24","author":"Ara\u00fajo","year":"2011","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0030","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10115-008-0125-7","article-title":"Pattern-based time-series subsequence clustering using radial distribution functions","volume":"18","author":"Denton","year":"2009","journal-title":"Knowledge and Information Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0035","doi-asserted-by":"crossref","first-page":"899","DOI":"10.1007\/s00778-006-0040-z","article-title":"Scaling and time warping in time series querying","volume":"17","author":"Fu","year":"2008","journal-title":"The VLDB Journal"},{"key":"10.1016\/j.knosys.2012.04.022_b0040","doi-asserted-by":"crossref","unstructured":"R. Fujimaki, S. Hirose, T. Nakata, Theoretical analysis of subsequence time-series clustering from a frequency-analysis viewpoint, in: Proceedings of the 2008 SIAM International Conference on Data Mining (SDM\u201908), Georgia, USA, 2008, pp. 506\u2013517.","DOI":"10.1137\/1.9781611972788.46"},{"issue":"23","key":"10.1016\/j.knosys.2012.04.022_b0045","doi-asserted-by":"crossref","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"key":"10.1016\/j.knosys.2012.04.022_b0050","series-title":"Data Mining: Concepts and Techniques","author":"Han","year":"2006"},{"key":"10.1016\/j.knosys.2012.04.022_b0055","doi-asserted-by":"crossref","unstructured":"T. Id\u00e9, Why does subsequence time-series clustering produce sine waves? in: 10th Pacific\u2013Asia Conference on Knowledge Discovery and Data Mining (PAKDD\u201906), Singapore, 2006, pp. 211\u2013222.","DOI":"10.1007\/11871637_23"},{"key":"10.1016\/j.knosys.2012.04.022_b0060","doi-asserted-by":"crossref","unstructured":"X. Jin, Y. Lu, C. Shi, Distribution discovery: local analysis of temporal rules, in: Proceedings of the 6th Pacific\u2013Asia Conference on Advances in Knowledge Discovery and Data Mining (ICDM\u201902), London, UK, 2002, pp. 469\u2013480.","DOI":"10.1007\/3-540-47887-6_47"},{"issue":"2","key":"10.1016\/j.knosys.2012.04.022_b0065","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1007\/s10115-004-0172-7","article-title":"Clustering of time-series subsequences is meaningless: implications for previous and future research","volume":"8","author":"Keogh","year":"2005","journal-title":"Knowledge and Information Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0070","unstructured":"E. Keogh, X. Xi, L. Wei, C.A. Ratanamahatana, The UCR Time Series Classification\/Clustering Homepage, 2008. ."},{"key":"10.1016\/j.knosys.2012.04.022_b0075","doi-asserted-by":"crossref","first-page":"6319","DOI":"10.1016\/j.eswa.2010.02.089","article-title":"A novel two-level clustering method for time series data analysis","volume":"37","author":"Lai","year":"2010","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.knosys.2012.04.022_b0080","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.knosys.2010.07.006","article-title":"Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming","volume":"24","author":"Lee","year":"2011","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0085","unstructured":"C.-S. Li, P.S. Yu, V. Castelli, Malm: a framework for mining sequence database at multiple abstraction levels, in: Proceedings of the 7th international conference on Information and knowledge management (CIKM\u201998), New York, USA, 1998, pp. 267\u2013272."},{"issue":"4","key":"10.1016\/j.knosys.2012.04.022_b0090","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1016\/j.knosys.2010.12.008","article-title":"Piecewise cloud approximation for time series mining","volume":"24","author":"Li","year":"2011","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0095","doi-asserted-by":"crossref","unstructured":"A. Mueen, E.J. Keogh, Q. Zhu, S. Cash, B. Westover, Exact Discovery of Time Series Motifs, in: SIAM International Conference on Data Mining (SDM\u201909), Nevada, USA, 2009, pp. 473\u2013484.","DOI":"10.1137\/1.9781611972795.41"},{"key":"10.1016\/j.knosys.2012.04.022_b0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2011.04.015","article-title":"Shape-based template matching for time series data","volume":"26","author":"Niennattrakul","year":"2012","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0105","doi-asserted-by":"crossref","unstructured":"M. Ohsaki, M. Nakase, S. Katagiri, Analysis of subsequence time-series clustering based on moving average, in: Proceedings of the 9th IEEE International Conference on Data Mining (ICDM\u201909), Washington, DC, USA, 2009, pp. 902\u2013907.","DOI":"10.1109\/ICDM.2009.147"},{"key":"10.1016\/j.knosys.2012.04.022_b0110","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1109\/TPAMI.2005.112","article-title":"Automatic sign language analysis: a survey and the future beyond lexical meaning","volume":"27","author":"Ong","year":"2005","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"7","key":"10.1016\/j.knosys.2012.04.022_b0115","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1016\/j.knosys.2008.03.022","article-title":"Discovering original motifs with different lengths from time series","volume":"21","author":"Tang","year":"2008","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0120","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s10618-005-0039-x","article-title":"Characteristic-based clustering for time series data","volume":"13","author":"Wang","year":"2006","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"7","key":"10.1016\/j.knosys.2012.04.022_b0125","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1016\/j.knosys.2008.03.027","article-title":"Classification of multivariate time series using locality preserving projections","volume":"21","author":"Weng","year":"2008","journal-title":"Knowledge-Based Systems"},{"issue":"7","key":"10.1016\/j.knosys.2012.04.022_b0130","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1016\/j.knosys.2008.03.014","article-title":"Classification of multivariate time series using two-dimensional singular value decomposition","volume":"21","author":"Weng","year":"2008","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.knosys.2012.04.022_b0135","doi-asserted-by":"crossref","unstructured":"H. Wu, B. Salzberg, G.C. Sharp, S.B. Jiang, H. Shirato, D. Kaeli, Subsequence matching on structured time series data, in: Proceedings of the 2005 ACM SIGMOD international conference on Management of data (SIGMOD\u201905), New York, USA, 2005, pp. 682\u2013693.","DOI":"10.1145\/1066157.1066235"},{"key":"10.1016\/j.knosys.2012.04.022_b0140","unstructured":"T. Yairi, Y. Kato, K. Hori, Fault detection by mining association rules from house-keeping data, in: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Montreal, Canada, 2001, pp. 18\u201321."},{"key":"10.1016\/j.knosys.2012.04.022_b0145","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1109\/TPAMI.2009.26","article-title":"Handling movement epenthesis and hand segmentation ambiguities in continuous sign language recognition using nested dynamic programming","volume":"32","author":"Yang","year":"2010","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.knosys.2012.04.022_b0150","doi-asserted-by":"crossref","unstructured":"D. Yankov, E. Keogh, J. Medina, B. Chiu, V. Zordan, Detecting time series motifs under uniform scaling, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD\u201907), New York, USA, 2007, pp. 844\u2013853.","DOI":"10.1145\/1281192.1281282"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705112001189?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705112001189?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,6,28]],"date-time":"2019-06-28T02:09:54Z","timestamp":1561687794000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705112001189"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,11]]},"references-count":30,"alternative-id":["S0950705112001189"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2012.04.022","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2012,11]]}}}