{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:57:04Z","timestamp":1740106624056,"version":"3.37.3"},"reference-count":71,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,12]],"date-time":"2024-04-12T00:00:00Z","timestamp":1712880000000},"content-version":"vor","delay-in-days":11,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100017649","name":"Government of the Hong Kong Special Administrative Region of the People","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100017649","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014718","name":"Innovative Research Group Project of the National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100014718","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100016011","name":"Saint Francis University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100016011","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Visual Communication and Image Representation"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.jvcir.2024.104143","type":"journal-article","created":{"date-parts":[[2024,4,9]],"date-time":"2024-04-09T02:47:10Z","timestamp":1712630830000},"page":"104143","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Edge fusion back projection GAN for large scale face super resolution"],"prefix":"10.1016","volume":"100","author":[{"given":"Xi","family":"Cheng","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8280-0367","authenticated-orcid":false,"given":"Wan-Chi","family":"Siu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7553","key":"10.1016\/j.jvcir.2024.104143_b0005","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"Yan","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.jvcir.2024.104143_b0010","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv. Neural Inf. Proces. Syst."},{"issue":"2","key":"10.1016\/j.jvcir.2024.104143_b0015","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.jvcir.2024.104143_b0020","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","article-title":"Beyond a gaussian denoiser: residual learning of deep cnn for image denoising","volume":"26","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104143_b0025","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.jvcir.2024.104143_b0030","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1646","article-title":"Accurate image super-resolution using very deep convolutional networks","author":"Kim","year":"2016"},{"key":"10.1016\/j.jvcir.2024.104143_b0035","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4681","article-title":"Photo-realistic single image super-resolution using a generative adversarial network","author":"Ledig","year":"2017"},{"key":"10.1016\/j.jvcir.2024.104143_b0040","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops","first-page":"136","article-title":"Enhanced deep residual networks for single image super-resolution","author":"Lim","year":"2017"},{"key":"10.1016\/j.jvcir.2024.104143_b0045","series-title":"In Proceedings of the IEEE International Conference on Computer Vision","first-page":"4799","article-title":"Image super-resolution using dense skip connections","author":"Tong","year":"2017"},{"key":"10.1016\/j.jvcir.2024.104143_b0050","series-title":"In Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"286","article-title":"Image super-resolution using very deep residual channel attention networks","author":"Zhang","year":"2018"},{"key":"10.1016\/j.jvcir.2024.104143_b0055","article-title":"Supervised pixel-wise GAN for face super-resolution","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.jvcir.2024.104143_b0060","article-title":"Deep back-projection networks for single image super-resolution","author":"Haris","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2024.104143_b0065","series-title":"In Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"1905","article-title":"Real-esrgan: training real-world blind super-resolution with pure synthetic data","author":"Wang","year":"2021"},{"key":"10.1016\/j.jvcir.2024.104143_b0070","series-title":"In Proceedings of the Ieee\/cvf Conference on Computer Vision and Pattern Recognition","first-page":"2437","article-title":"Pulse: self-supervised photo upsampling via latent space exploration of generative models","author":"Menon","year":"2020"},{"key":"10.1016\/j.jvcir.2024.104143_b0075","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"624","article-title":"Deep laplacian pyramid networks for fast and accurate super-resolution","author":"Lai","year":"2017"},{"key":"10.1016\/j.jvcir.2024.104143_b0080","series-title":"In European Conference on Computer Vision","first-page":"694","article-title":"Perceptual losses for real-time style transfer and super-resolution","author":"Johnson","year":"2016"},{"key":"10.1016\/j.jvcir.2024.104143_b0085","series-title":"In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4401","article-title":"A style-based generator architecture for generative adversarial networks","author":"Karras","year":"2019"},{"key":"10.1016\/j.jvcir.2024.104143_b0090","series-title":"In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"8110","article-title":"Analyzing and improving the image quality of stylegan","author":"Karras","year":"2020"},{"key":"10.1016\/j.jvcir.2024.104143_b0095","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"issue":"7","key":"10.1016\/j.jvcir.2024.104143_b0100","doi-asserted-by":"crossref","first-page":"2480","DOI":"10.1109\/TPAMI.2020.2968521","article-title":"Residual dense network for image restoration","volume":"43","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2024.104143_b0105","series-title":"In Proceedings of the IEEE International Conference on Computer Vision","first-page":"4539","article-title":"Memnet: a persistent memory network for image restoration","author":"Tai","year":"2017"},{"issue":"15","key":"10.1016\/j.jvcir.2024.104143_b0110","doi-asserted-by":"crossref","first-page":"2992","DOI":"10.3390\/app9152992","article-title":"Triple-attention mixed-link network for single-image super-resolution","volume":"9","author":"Cheng","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.jvcir.2024.104143_b0115","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2023.103874","article-title":"Learning knowledge representation with meta knowledge distillation for single image super-resolution","author":"Zhu","year":"2023","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.jvcir.2024.104143_b0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2023.103889","article-title":"Multi-scale convolutional attention network for lightweight image super-resolution","author":"Xie","year":"2023","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.jvcir.2024.104143_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2023.103834","article-title":"An efficient lightweight network for single image super-resolution","volume":"93","author":"Tang","year":"2023","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.jvcir.2024.104143_b0130","series-title":"In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7132","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2018"},{"key":"10.1016\/j.jvcir.2024.104143_b0135","unstructured":"A. Dosovitskiy et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, 2020."},{"key":"10.1016\/j.jvcir.2024.104143_b0140","series-title":"In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"12299","article-title":"Pre-trained image processing transformer","author":"Chen","year":"2021"},{"key":"10.1016\/j.jvcir.2024.104143_b0145","series-title":"In Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"1833","article-title":"Swinir: image restoration using swin transformer","author":"Liang","year":"2021"},{"key":"10.1016\/j.jvcir.2024.104143_b0150","unstructured":"D. P. Kingma, M. Welling, \u201cAuto-encoding variational bayes,\u201d arXiv preprint arXiv:1312.6114, 2013."},{"issue":"11","key":"10.1016\/j.jvcir.2024.104143_b0155","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Commun. ACM"},{"issue":"4","key":"10.1016\/j.jvcir.2024.104143_b0160","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1109\/TCSVT.2020.3003832","article-title":"Photo-realistic image super-resolution via variational autoencoders","volume":"31","author":"Liu","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.jvcir.2024.104143_b0165","doi-asserted-by":"crossref","unstructured":"X. Wang et al., Esrgan: Enhanced super-resolution generative adversarial networks, in: Proceedings of the European conference on computer vision (ECCV) workshops, 2018.","DOI":"10.1007\/978-3-030-11021-5_5"},{"issue":"3","key":"10.1016\/j.jvcir.2024.104143_b0170","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1109\/LSP.2012.2227726","article-title":"Making a \u201ccompletely blind\u201d image quality analyzer","volume":"20","author":"Mittal","year":"2012","journal-title":"IEEE Signal Process Lett."},{"key":"10.1016\/j.jvcir.2024.104143_b0175","doi-asserted-by":"crossref","unstructured":"Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, L. Zelnik-Manor, The 2018 pirm challenge on perceptual image super-resolution, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.","DOI":"10.1007\/978-3-030-11021-5_21"},{"key":"10.1016\/j.jvcir.2024.104143_b0180","unstructured":"T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for improved quality, stability, and variation, arXiv preprint arXiv:1710.10196, 2017."},{"key":"10.1016\/j.jvcir.2024.104143_b0185","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.neucom.2021.03.124","article-title":"Progressive face super-resolution with cascaded recurrent convolutional network","volume":"449","author":"Liu","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jvcir.2024.104143_b0190","doi-asserted-by":"crossref","unstructured":"D. Huang, H. Liu, Face hallucination using convolutional neural network with iterative back projection, in: Chinese Conference on Biometric Recognition, 2016, pp. 167-175.","DOI":"10.1007\/978-3-319-46654-5_19"},{"key":"10.1016\/j.jvcir.2024.104143_b0195","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.neucom.2019.09.079","article-title":"RBPNET: an asymptotic residual back-projection network for super-resolution of very low-resolution face image","volume":"376","author":"Chen","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jvcir.2024.104143_b0200","doi-asserted-by":"crossref","first-page":"1219","DOI":"10.1109\/TIP.2020.3043093","article-title":"Learning spatial attention for face super-resolution","volume":"30","author":"Chen","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104143_b0205","doi-asserted-by":"crossref","unstructured":"X. Yu, F. Porikli, Ultra-resolving face images by discriminative generative networks, in: European conference on computer vision, 2016, pp. 318-333.","DOI":"10.1007\/978-3-319-46454-1_20"},{"key":"10.1016\/j.jvcir.2024.104143_b0210","doi-asserted-by":"crossref","unstructured":"H. Dou, C. Chen, X. Hu, Z. Xuan, Z. Hu, S. Peng, PCA-SRGAN: Incremental Orthogonal Projection Discrimination for Face Super-resolution, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 1891-1899.","DOI":"10.1145\/3394171.3413590"},{"key":"10.1016\/j.jvcir.2024.104143_b0215","doi-asserted-by":"crossref","first-page":"4157","DOI":"10.1109\/TIP.2021.3069554","article-title":"Features guided face super-resolution via hybrid model of deep learning and random forests","volume":"30","author":"Liu","year":"2021","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.jvcir.2024.104143_b0220","doi-asserted-by":"crossref","first-page":"6225","DOI":"10.1109\/TIP.2019.2924554","article-title":"Sigan: siamese generative adversarial network for identity-preserving face hallucination","volume":"28","author":"Hsu","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104143_b0225","doi-asserted-by":"crossref","first-page":"2150","DOI":"10.1109\/TIP.2019.2945835","article-title":"Face hallucination using cascaded super-resolution and identity priors","volume":"29","author":"Grm","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.jvcir.2024.104143_b0230","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104143_b0235","doi-asserted-by":"crossref","unstructured":"K. C. K. Chan, X. Wang, X. Xu, J. Gu, C. C. Loy, Glean: Generative latent bank for large-factor image super-resolution, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14245-14254.","DOI":"10.1109\/CVPR46437.2021.01402"},{"key":"10.1016\/j.jvcir.2024.104143_b0240","doi-asserted-by":"crossref","unstructured":"X. Wang, Y. Li, H. Zhang, Y. Shan, Towards Real-World Blind Face Restoration with Generative Facial Prior, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9168-9178.","DOI":"10.1109\/CVPR46437.2021.00905"},{"key":"10.1016\/j.jvcir.2024.104143_b0245","doi-asserted-by":"crossref","unstructured":"T. Yang, P. Ren, X. Xie, L. Zhang, GAN Prior Embedded Network for Blind Face Restoration in the Wild, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 672-681.","DOI":"10.1109\/CVPR46437.2021.00073"},{"issue":"3","key":"10.1016\/j.jvcir.2024.104143_b0250","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.1109\/TIP.2011.2168416","article-title":"Robust soft-decision interpolation using weighted least squares","volume":"21","author":"Hung","year":"2011","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104143_b0255","unstructured":"C.-S. Wong, W.-C. Siu, Further improved edge-directed interpolation and fast EDI for SDTV to HDTV conversion, in: 2010 18th European Signal Processing Conference, 2010, IEEE, pp. 309-313."},{"key":"10.1016\/j.jvcir.2024.104143_b0260","doi-asserted-by":"crossref","unstructured":"C.-S. Wong, W.-C. Siu, Adaptive directional window selection for edge-directed interpolation, in: 2010 Proceedings of 19th International Conference on Computer Communications and Networks, 2010, IEEE, pp. 1-6.","DOI":"10.1109\/ICCCN.2010.5560064"},{"key":"10.1016\/j.jvcir.2024.104143_b0265","doi-asserted-by":"crossref","unstructured":"S. Ko, B.-R. Dai, Multi-Laplacian GAN with Edge Enhancement for Face Super Resolution, in: 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 3505-3512.","DOI":"10.1109\/ICPR48806.2021.9412950"},{"key":"10.1016\/j.jvcir.2024.104143_b0270","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.neucom.2021.03.048","article-title":"Edge and identity preserving network for face super-resolution","volume":"446","author":"Kim","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jvcir.2024.104143_b0275","doi-asserted-by":"crossref","unstructured":"X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 510-519.","DOI":"10.1109\/CVPR.2019.00060"},{"key":"10.1016\/j.jvcir.2024.104143_b0280","doi-asserted-by":"crossref","first-page":"7984","DOI":"10.1109\/TIP.2020.3008396","article-title":"Lightening network for low-light image enhancement","volume":"29","author":"Wang","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104143_b0285","unstructured":"K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, in: International Conference on Learning Representations, 2015."},{"key":"10.1016\/j.jvcir.2024.104143_b0290","doi-asserted-by":"crossref","unstructured":"C.-H. Lee, Z. Liu, L. Wu, P. Luo, Maskgan: Towards diverse and interactive facial image manipulation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5549-5558.","DOI":"10.1109\/CVPR42600.2020.00559"},{"key":"10.1016\/j.jvcir.2024.104143_b0295","unstructured":"I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts, arXiv preprint arXiv:1608.03983, 2016."},{"key":"10.1016\/j.jvcir.2024.104143_b0300","doi-asserted-by":"crossref","unstructured":"R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 586-595.","DOI":"10.1109\/CVPR.2018.00068"},{"key":"10.1016\/j.jvcir.2024.104143_b0305","article-title":"Gans trained by a two time-scale update rule converge to a local nash equilibrium","volume":"30","author":"Heusel","year":"2017","journal-title":"Adv. Neural Inf. Proces. Syst."},{"key":"10.1016\/j.jvcir.2024.104143_b0310","doi-asserted-by":"crossref","unstructured":"J. Choi, S. Kim, Y. Jeong, Y. Gwon, S. Yoon, Ilvr: Conditioning method for denoising diffusion probabilistic models, arXiv preprint arXiv:2108.02938, 2021.","DOI":"10.1109\/ICCV48922.2021.01410"},{"key":"10.1016\/j.jvcir.2024.104143_b0315","doi-asserted-by":"crossref","unstructured":"J. Gu, Y. Shen, B. Zhou, Image processing using multi-code gan prior, in: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, 2020, pp. 3012-3021.","DOI":"10.1109\/CVPR42600.2020.00308"},{"key":"10.1016\/j.jvcir.2024.104143_b0320","doi-asserted-by":"crossref","unstructured":"Y. Chen, Y. Tai, X. Liu, C. Shen, J. Yang. Fsrnet: End-to-end learning face super-resolution with facial priors, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2492-2501.","DOI":"10.1109\/CVPR.2018.00264"},{"key":"10.1016\/j.jvcir.2024.104143_b0325","doi-asserted-by":"crossref","unstructured":"J. Xin, N. Wang, X. Gao, J. Li, Residual attribute attention network for face image super-resolution, in: Proceedings of the AAAI conference on artificial intelligence 33(01) (2019) 9054-9061.","DOI":"10.1609\/aaai.v33i01.33019054"},{"key":"10.1016\/j.jvcir.2024.104143_b0330","doi-asserted-by":"crossref","unstructured":"J. Xin, N. Wang, X. Jiang, J. Li, X. Gao, Z. Li, Facial attribute capsules for noise face super resolution, in: Proceedings of the AAAI Conference on Artificial Intelligence 34(07) (2020) 12476-12483.","DOI":"10.1609\/aaai.v34i07.6935"},{"key":"10.1016\/j.jvcir.2024.104143_b0335","article-title":"Learning to hallucinate face in the dark","author":"Wang","year":"2023","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.jvcir.2024.104143_b0340","article-title":"Rethinking prior-guided face super-resolution: a new paradigm with facial component prior","author":"Lu","year":"2022","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.jvcir.2024.104143_b0345","article-title":"FaceFormer: aggregating global and local representation for face hallucination","author":"Wang","year":"2022","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"11","key":"10.1016\/j.jvcir.2024.104143_b0350","doi-asserted-by":"crossref","first-page":"7317","DOI":"10.1109\/TCSVT.2022.3181828","article-title":"Propagating facial prior knowledge for multitask learning in face super-resolution","volume":"32","author":"Wang","year":"2022","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.jvcir.2024.104143_b0355","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1109\/TIP.2023.3240845","article-title":"Semi-cycled generative adversarial networks for real-world face super-resolution","volume":"32","author":"Hou","year":"2023","journal-title":"IEEE Trans. Image Process."}],"container-title":["Journal of Visual Communication and Image Representation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320324000981?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320324000981?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,3]],"date-time":"2024-06-03T09:48:00Z","timestamp":1717408080000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1047320324000981"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":71,"alternative-id":["S1047320324000981"],"URL":"https:\/\/doi.org\/10.1016\/j.jvcir.2024.104143","relation":{},"ISSN":["1047-3203"],"issn-type":[{"type":"print","value":"1047-3203"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Edge fusion back projection GAN for large scale face super resolution","name":"articletitle","label":"Article Title"},{"value":"Journal of Visual Communication and Image Representation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jvcir.2024.104143","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"104143"}}