{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:56:45Z","timestamp":1740106605146,"version":"3.37.3"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,11,1]],"date-time":"2015-11-01T00:00:00Z","timestamp":1446336000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100007834","name":"Natural Science Foundation of Ningbo","doi-asserted-by":"publisher","award":["2014A610024","2014A610066"],"id":[{"id":"10.13039\/100007834","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004731","name":"Natural Science Foundation of Zhejiang Province","doi-asserted-by":"publisher","award":["LY13F020011","LY14F020009","LY16F030012"],"id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013139","name":"Humanities and Social Science Fund of Ministry of Education of China","doi-asserted-by":"publisher","award":["13YJAZH084"],"id":[{"id":"10.13039\/501100013139","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Visual Communication and Image Representation"],"published-print":{"date-parts":[[2015,11]]},"DOI":"10.1016\/j.jvcir.2015.09.005","type":"journal-article","created":{"date-parts":[[2015,9,26]],"date-time":"2015-09-26T03:56:24Z","timestamp":1443239784000},"page":"134-148","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Robust domain adaptation image classification via sparse and low rank representation"],"prefix":"10.1016","volume":"33","author":[{"given":"JianWen","family":"Tao","sequence":"first","affiliation":[]},{"given":"Shiting","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Wenjun","family":"Hu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.jvcir.2015.09.005_b0005","doi-asserted-by":"crossref","first-page":"1339","DOI":"10.1109\/TIP.2011.2169269","article-title":"Web and personal image annotation by mining label correlation with relaxed visual graph embedding","volume":"21","author":"Yang","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.jvcir.2015.09.005_b0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1348246.1348248","article-title":"Image retrieval: ideas, influences, and trends of the new age","volume":"40","author":"Datta","year":"2008","journal-title":"ACM Comput. Surv."},{"issue":"1","key":"10.1016\/j.jvcir.2015.09.005_b0015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1126004.1126005","article-title":"Content-based multimedia information retrieval: state of the art and challenges","volume":"2","author":"Lew","year":"2006","journal-title":"ACM Trans. Multimedia Comput., Commun. Appl."},{"key":"10.1016\/j.jvcir.2015.09.005_b0020","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012","article-title":"Robust visual domain adaptation with low-rank reconstruction","author":"Jhuo","year":"2012"},{"key":"10.1016\/j.jvcir.2015.09.005_b0025","unstructured":"X. Zhu, Semi-Supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison, 2005."},{"issue":"5","key":"10.1016\/j.jvcir.2015.09.005_b0030","doi-asserted-by":"crossref","first-page":"770","DOI":"10.1109\/TPAMI.2009.57","article-title":"Domain adaptation problems: a DASVM classification technique and a circular validation strategy","volume":"32","author":"Bruzzone","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.jvcir.2015.09.005_b0035","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2010","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.jvcir.2015.09.005_b0040","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.neucom.2014.02.044","article-title":"Sparsity regularization label propagation for domain adaptation learning","volume":"139","author":"Tao","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jvcir.2015.09.005_b0045","unstructured":"L. Duan, I.W. Tsang, D. Xu, S.J. Maybank, Domain transfer SVM for video concept detection, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp. 1375\u20131381."},{"key":"10.1016\/j.jvcir.2015.09.005_b0050","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1109\/TPAMI.2011.114","article-title":"Domain transfer multiple kernel learning","author":"Duan","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.jvcir.2015.09.005_b0055","doi-asserted-by":"crossref","first-page":"2980","DOI":"10.1109\/TIP.2011.2134107","article-title":"DAML: domain adaptation metric learning","volume":"20","author":"Geng","year":"2011","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"10.1016\/j.jvcir.2015.09.005_b0060","doi-asserted-by":"crossref","first-page":"1983","DOI":"10.1007\/s11432-012-4611-x","article-title":"A kernel learning framework for domain adaptation learning","volume":"55","author":"Tao","year":"2012","journal-title":"Sci. China Inf. Sci."},{"issue":"11","key":"10.1016\/j.jvcir.2015.09.005_b0065","doi-asserted-by":"crossref","first-page":"3962","DOI":"10.1016\/j.patcog.2012.04.014","article-title":"On minimum distribution discrepancy support vector machine for domain adaptation","volume":"45","author":"Tao","year":"2012","journal-title":"Pattern Recog."},{"key":"10.1016\/j.jvcir.2015.09.005_b0070","doi-asserted-by":"crossref","unstructured":"J. Yang, R. Yan, A.G. Hauptmann, Cross-domain video concept detection using adaptive SVMs, in: Proceedings of the ACM International Conference on Multimedia, 2007, pp. 188\u2013197.","DOI":"10.1145\/1291233.1291276"},{"key":"10.1016\/j.jvcir.2015.09.005_b0075","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1109\/TNNLS.2011.2178556","article-title":"Domain adaptation from multiple sources: a domain-dependent regularization approach","author":"Duan","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"2","key":"10.1016\/j.jvcir.2015.09.005_b0080","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.jvcir.2015.09.005_b0085","unstructured":"Hua Wang, Feiping Nie, Heng Huang, Robust and discriminative self-taught learning, in: Proceedings of the 30th International Conference on Machine Learning, 2013."},{"key":"10.1016\/j.jvcir.2015.09.005_b0090","doi-asserted-by":"crossref","unstructured":"B. Quanz, Jun Huan, M. Mishra, Knowledge transfer with low-quality data: a feature extraction issue, 2011 IEEE 27th International Conference on Data Engineering (ICDE), 2011, pp. 769, 779, 11\u201316.","DOI":"10.1109\/ICDE.2011.5767917"},{"key":"10.1016\/j.jvcir.2015.09.005_b0095","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013","article-title":"Transfer sparse coding for robust image representation","author":"Long","year":"2013"},{"issue":"6","key":"10.1016\/j.jvcir.2015.09.005_b0100","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1109\/JPROC.2010.2044470","article-title":"Sparse representation for computer vision and pattern recognition","volume":"98","author":"Wright","year":"2010","journal-title":"Proc. IEEE"},{"issue":"2","key":"10.1016\/j.jvcir.2015.09.005_b0105","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1109\/TPAMI.2008.79","article-title":"Robust face recognition via sparse representation","volume":"31","author":"Wright","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.jvcir.2015.09.005_b0110","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.jvcir.2015.09.005_b0115","doi-asserted-by":"crossref","first-page":"4009","DOI":"10.1109\/TGRS.2012.2226730","article-title":"Graph-regularized low-rank representation for destriping of hyperspectral images","volume":"51","author":"Xiaoqiang","year":"2013","journal-title":"IEEE Trans. Geosci. Rem. Sens."},{"key":"10.1016\/j.jvcir.2015.09.005_b0120","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012","article-title":"Non-negative low rank and sparse graph for semi-supervised learning","author":"Zhuang","year":"2012"},{"issue":"7","key":"10.1016\/j.jvcir.2015.09.005_b0125","doi-asserted-by":"crossref","first-page":"1921","DOI":"10.1109\/TIP.2010.2044958","article-title":"Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction","volume":"19","author":"Nie","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.jvcir.2015.09.005_b0130","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/TKDE.2007.190672","article-title":"Label propagation through linear neighborhoods","volume":"20","author":"Wang","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.jvcir.2015.09.005_b0135","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013","article-title":"Learning structured low-rank representations for image classification","author":"Zhang","year":"2013"},{"key":"10.1016\/j.jvcir.2015.09.005_b0140","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1016\/j.neucom.2013.06.013","article-title":"Low-rank representation with local constraint for graph construction","volume":"122","author":"Zheng","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jvcir.2015.09.005_b0145","series-title":"Proceedings of the 2012 IEEE 12th International Conference on Data Mining","article-title":"Low-rank transfer subspace learning","author":"Shao","year":"2012"},{"key":"10.1016\/j.jvcir.2015.09.005_b0150","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011","article-title":"low-rank and sparse decomposition","author":"Zhang","year":"2011"},{"key":"10.1016\/j.jvcir.2015.09.005_b0155","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012","article-title":"Sparse representation for face recognition based on discriminative low-rank dictionary learning","author":"Ma","year":"2012"},{"issue":"12","key":"10.1016\/j.jvcir.2015.09.005_b0160","doi-asserted-by":"crossref","first-page":"3736","DOI":"10.1109\/TIP.2006.881969","article-title":"Image denoising via sparse and redundant representations over learned dictionaries","volume":"15","author":"Elad","year":"2006","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.jvcir.2015.09.005_b0165","doi-asserted-by":"crossref","first-page":"4311","DOI":"10.1109\/TSP.2006.881199","article-title":"K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation","volume":"54","author":"Aharon","year":"2006","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.jvcir.2015.09.005_b0170","first-page":"673","article-title":"A fast, consistent kernel two-sample test","volume":"22","author":"Gretton","year":"2010","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2002","series-title":"Learning with Kernels","author":"Sch\u00f6lkopf","key":"10.1016\/j.jvcir.2015.09.005_b0175"},{"key":"10.1016\/j.jvcir.2015.09.005_b0180","unstructured":"Z. Lin, M. Chen, L. Wu, Y. Ma, The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices, 2009. UIUC Technical Report UILUENG-09-2215, Available from: 1009.5055."},{"key":"10.1016\/j.jvcir.2015.09.005_b0185","unstructured":"Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, in: NIPS, 2011."},{"issue":"4","key":"10.1016\/j.jvcir.2015.09.005_b0190","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","article-title":"A singular value thresholding algorithm for matrix completion","author":"Cai","year":"2010","journal-title":"SIAM J. Optimiz."},{"issue":"9","key":"10.1016\/j.jvcir.2015.09.005_b0195","doi-asserted-by":"crossref","first-page":"2624","DOI":"10.1109\/JPROC.2012.2197809","article-title":"Robust and scalable graph-based semi-supervised learning","volume":"100","author":"Liu","year":"2012","journal-title":"Proc. IEEE"},{"issue":"7","key":"10.1016\/j.jvcir.2015.09.005_b0200","doi-asserted-by":"crossref","first-page":"1921","DOI":"10.1109\/TIP.2010.2044958","article-title":"Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction","volume":"19","author":"Nie","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2015.09.005_b0205","article-title":"Learning with local and global consistency","volume":"16","author":"Zhou","year":"2004","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.jvcir.2015.09.005_b0210","first-page":"2399","article-title":"Manifold regularization: a geometric framework for learning from examples","volume":"7","author":"Belkin","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.jvcir.2015.09.005_b0215","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010","article-title":"Local features are not lonely\u2013Laplacian sparse coding for image classification","author":"Gao","year":"2010"},{"issue":"11","key":"10.1016\/j.jvcir.2015.09.005_b0220","doi-asserted-by":"crossref","first-page":"3608","DOI":"10.1109\/TIP.2006.881945","article-title":"Orthogonal Laplacian faces for face recognition","volume":"15","author":"Cai","year":"2006","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2015.09.005_b0225","article-title":"Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach","author":"Bergamo","year":"2010","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"2","key":"10.1016\/j.jvcir.2015.09.005_b0230","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comp. Vis."},{"key":"10.1016\/j.jvcir.2015.09.005_b0235","unstructured":"Gary B. Huang, Manu Ramesh, Tamara Berg, Erik Learned-Miller, Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments, University of Massachusetts, Amherst, Technical Report 07-49, October, 2007 ."},{"key":"10.1016\/j.jvcir.2015.09.005_b0240","doi-asserted-by":"crossref","unstructured":"Lina J. Karam Tong Zhu, Quality Labeled Faces in the Wiild (QLFW): A Database for Studying Face Recognition in Real-World Enviroments, Arizona State University, IVU Lab Technical Report 03-2014-1, March 2014 .","DOI":"10.1117\/12.2080393"},{"issue":"4","key":"10.1016\/j.jvcir.2015.09.005_b0245","doi-asserted-by":"crossref","first-page":"723","DOI":"10.1109\/TNN.2007.914138","article-title":"A note on the bias in SVMs for multi classification","volume":"19","author":"Abril","year":"2008","journal-title":"IEEE Trans. Neural Netw."}],"container-title":["Journal of Visual Communication and Image Representation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320315001662?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320315001662?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,8]],"date-time":"2022-07-08T08:31:36Z","timestamp":1657269096000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1047320315001662"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,11]]},"references-count":49,"alternative-id":["S1047320315001662"],"URL":"https:\/\/doi.org\/10.1016\/j.jvcir.2015.09.005","relation":{},"ISSN":["1047-3203"],"issn-type":[{"type":"print","value":"1047-3203"}],"subject":[],"published":{"date-parts":[[2015,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust domain adaptation image classification via sparse and low rank representation","name":"articletitle","label":"Article Title"},{"value":"Journal of Visual Communication and Image Representation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jvcir.2015.09.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}