{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T13:47:59Z","timestamp":1719928079201},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004497","name":"Research Council, KU Leuven","doi-asserted-by":"publisher","award":["PF\/10\/002"],"id":[{"id":"10.13039\/501100004497","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Fund for Scientific Research\u2013Flanders","award":["G.0828.14N"]},{"name":"EOS Project","award":["30468160"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Symbolic Computation"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.jsc.2019.10.009","type":"journal-article","created":{"date-parts":[[2019,11,2]],"date-time":"2019-11-02T09:50:31Z","timestamp":1572688231000},"page":"63-85","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Truncated normal forms for solving polynomial systems: Generalized and efficient algorithms"],"prefix":"10.1016","volume":"102","author":[{"given":"Bernard","family":"Mourrain","sequence":"first","affiliation":[]},{"given":"Simon","family":"Telen","sequence":"additional","affiliation":[]},{"given":"Marc","family":"Van Barel","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jsc.2019.10.009_br0010","series-title":"Numerically Solving Polynomial Systems with Bertini","volume":"vol. 25","author":"Bates","year":"2013"},{"key":"10.1016\/j.jsc.2019.10.009_br0020","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.cam.2014.01.035","article-title":"A fast recursive orthogonalization scheme for the Macaulay matrix","volume":"267","author":"Batselier","year":"2014","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jsc.2019.10.009_br0030","article-title":"Solving Polynomial Equations: Foundations, Algorithms, and Applications","author":"Cattani","year":"2005"},{"key":"10.1016\/j.jsc.2019.10.009_br0040","series-title":"Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation","first-page":"133","article-title":"A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots","author":"Corless","year":"1997"},{"key":"10.1016\/j.jsc.2019.10.009_br0050","series-title":"Ideals, Varieties, and Algorithms, vol. 3","author":"Cox","year":"1992"},{"key":"10.1016\/j.jsc.2019.10.009_br0060","series-title":"Using Algebraic Geometry","volume":"vol. 185","author":"Cox","year":"2006"},{"issue":"16","key":"10.1016\/j.jsc.2019.10.009_br0070","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.3182\/20120711-3-BE-2027.00217","article-title":"Back to the roots: polynomial system solving, linear algebra, systems theory","volume":"45","author":"Dreesen","year":"2012","journal-title":"IFAC Proc. Vol."},{"key":"10.1016\/j.jsc.2019.10.009_br0080","article-title":"Introduction \u00e0 la r\u00e9solution des syst\u00e8mes polynomiaux","volume":"vol. 59","author":"Elkadi","year":"2007"},{"issue":"1\u20132","key":"10.1016\/j.jsc.2019.10.009_br0090","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1006\/jsco.1998.0266","article-title":"Matrices in elimination theory","volume":"28","author":"Emiris","year":"1999","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2019.10.009_br0100","series-title":"Mathematical Software - ICMS 2010","first-page":"84","article-title":"FGb: a library for computing Gr\u00f6bner bases","volume":"vol. 6327","author":"Faug\u00e8re","year":"2010"},{"key":"10.1016\/j.jsc.2019.10.009_br0110","series-title":"21st International Conference on Formal Power Series and Algebraic Combinatorics","first-page":"491","article-title":"polymake and lattice polytopes","author":"Joswig","year":"2009"},{"issue":"5","key":"10.1016\/j.jsc.2019.10.009_br0120","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1006\/jsco.2001.0476","article-title":"Multivariate polynomial system solving using intersections of eigenspaces","volume":"32","author":"M\u00f6ller","year":"2001","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2019.10.009_br0130","series-title":"Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes","first-page":"430","article-title":"A new criterion for normal form algorithms","author":"Mourrain","year":"1999"},{"key":"10.1016\/j.jsc.2019.10.009_br0140","series-title":"Symbolic-Numeric Computation","first-page":"223","article-title":"Pythagore's dilemma, symbolic-numeric computation, and the border basis method","author":"Mourrain","year":"2007"},{"issue":"3","key":"10.1016\/j.jsc.2019.10.009_br0150","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.jsc.2008.04.016","article-title":"Subdivision methods for solving polynomial equations","volume":"44","author":"Mourrain","year":"2009","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2019.10.009_br0160","series-title":"Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation","first-page":"253","article-title":"Generalized normal forms and polynomial system solving","author":"Mourrain","year":"2005"},{"issue":"2","key":"10.1016\/j.jsc.2019.10.009_br0170","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.tcs.2008.09.004","article-title":"Stable normal forms for polynomial system solving","volume":"409","author":"Mourrain","year":"2008","journal-title":"Theor. Comput. Sci."},{"issue":"1","key":"10.1016\/j.jsc.2019.10.009_br0180","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/s00211-014-0635-z","article-title":"Computing the common zeros of two bivariate functions via B\u00e9zout resultants","volume":"129","author":"Nakatsukasa","year":"2015","journal-title":"Numer. Math."},{"key":"10.1016\/j.jsc.2019.10.009_br0190","doi-asserted-by":"crossref","first-page":"1551","DOI":"10.1137\/130932387","article-title":"Numerical solution of bivariate and polyanalytic polynomial systems","volume":"52","author":"Sorber","year":"2014","journal-title":"SIAM J. Numer. Anal."},{"issue":"4","key":"10.1016\/j.jsc.2019.10.009_br0200","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1145\/242961.242966","article-title":"Matrix eigenproblems are at the heart of polynomial system solving","volume":"30","author":"Stetter","year":"1996","journal-title":"ACM SIGSAM Bull."},{"key":"10.1016\/j.jsc.2019.10.009_br0210","article-title":"Solving Systems of Polynomial Equations","volume":"vol. 97","author":"Sturmfels","year":"2002"},{"key":"10.1016\/j.jsc.2019.10.009_br0220","series-title":"Orthogonal Polynomials","author":"Szeg\u0151","year":"1967"},{"issue":"3","key":"10.1016\/j.jsc.2019.10.009_br0230","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1137\/17M1162433","article-title":"Solving polynomial systems via truncated normal forms","volume":"39","author":"Telen","year":"2018","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10.1016\/j.jsc.2019.10.009_br0240","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.cam.2018.04.021","article-title":"A stabilized normal form algorithm for generic systems of polynomial equations","volume":"342","author":"Telen","year":"2018","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jsc.2019.10.009_br0250","doi-asserted-by":"crossref","DOI":"10.1137\/130908002","article-title":"An extension of Chebfun to two dimensions","volume":"35","author":"Townsend","year":"2013","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jsc.2019.10.009_br0260","series-title":"Approximation Theory and Approximation Practice","volume":"vol. 128","author":"Trefethen","year":"2013"},{"key":"10.1016\/j.jsc.2019.10.009_br0270","series-title":"Numerical Linear Algebra","volume":"vol. 50","author":"Trefethen","year":"1997"},{"issue":"2","key":"10.1016\/j.jsc.2019.10.009_br0280","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1145\/317275.317286","article-title":"Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation","volume":"25","author":"Verschelde","year":"1999","journal-title":"ACM Trans. Math. Softw."}],"container-title":["Journal of Symbolic Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0747717119301166?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0747717119301166?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,2]],"date-time":"2022-07-02T08:12:21Z","timestamp":1656749541000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0747717119301166"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":28,"alternative-id":["S0747717119301166"],"URL":"https:\/\/doi.org\/10.1016\/j.jsc.2019.10.009","relation":{},"ISSN":["0747-7171"],"issn-type":[{"value":"0747-7171","type":"print"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Truncated normal forms for solving polynomial systems: Generalized and efficient algorithms","name":"articletitle","label":"Article Title"},{"value":"Journal of Symbolic Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jsc.2019.10.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}