{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T11:51:26Z","timestamp":1721821886452},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Symbolic Computation"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.jsc.2016.02.004","type":"journal-article","created":{"date-parts":[[2016,2,8]],"date-time":"2016-02-08T13:15:42Z","timestamp":1454937342000},"page":"197-210","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"P2","title":["Bounding the number of limit cycles for a polynomial Li\u00e9nard system by using regular chains"],"prefix":"10.1016","volume":"79","author":[{"given":"Xianbo","family":"Sun","sequence":"first","affiliation":[]},{"given":"Wentao","family":"Huang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jsc.2016.02.004_br0010","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1090\/S0002-9904-1902-00923-3","article-title":"Mathematical problems","volume":"8","author":"Hilbert","year":"1902","journal-title":"Bull. Am. Math. Soc."},{"key":"10.1016\/j.jsc.2016.02.004_br0020","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1088\/0951-7715\/8\/5\/011","article-title":"Eleven small limit cycles in a cubic vector field","volume":"8","author":"Zoladek","year":"1995","journal-title":"Nonlinearity"},{"key":"10.1016\/j.jsc.2016.02.004_br0030","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/BF03025291","article-title":"Mathematical problems for the next century","volume":"20","author":"Smale","year":"1998","journal-title":"Math. Intell."},{"key":"10.1016\/j.jsc.2016.02.004_br0040","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1007\/BF01081886","article-title":"Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields","volume":"11","author":"Arnold","year":"1977","journal-title":"Funct. Anal. Appl."},{"key":"10.1016\/j.jsc.2016.02.004_br0050","first-page":"234","article-title":"On dynamical systems close to Hamiltonian ones","volume":"4","author":"Pontryagin","year":"1934","journal-title":"Zh. Exp. Theor. Phys."},{"key":"10.1016\/j.jsc.2016.02.004_br0080","doi-asserted-by":"crossref","first-page":"3609","DOI":"10.1016\/j.jde.2009.01.038","article-title":"A cubic system with thirteen limit cycles","volume":"246","author":"Li","year":"2009","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0090","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1006\/jdeq.2000.3977","article-title":"Perturbations from an elliptic Hamiltonian of degree four: (I) saddle loop and two saddle cycle","volume":"176","author":"Dumortier","year":"2001","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0100","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1006\/jdeq.2000.3978","article-title":"Perturbations from an elliptic Hamiltonian of degree four: (II) cuspidal loop","volume":"175","author":"Dumortier","year":"2001","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0110","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/S0022-0396(02)00110-9","article-title":"Perturbations from an elliptic Hamiltonian of degree four: (III) global centre","volume":"188","author":"Dumortier","year":"2003","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0120","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/S0022-0396(02)00111-0","article-title":"Perturbations from an elliptic Hamiltonian of degree four: (IV) figure eight-loop","volume":"88","author":"Dumortier","year":"2003","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0140","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.physleta.2006.05.031","article-title":"On the zeros of the Abelian integrals for a class of Li\u00e9nard systems","volume":"358","author":"Zhang","year":"2006","journal-title":"Phys. Lett. A"},{"key":"10.1016\/j.jsc.2016.02.004_br0150","doi-asserted-by":"crossref","first-page":"2957","DOI":"10.1016\/j.na.2007.02.039","article-title":"Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-gure loop","volume":"68","author":"Asheghi","year":"2008","journal-title":"Nonlinear Anal."},{"key":"10.1016\/j.jsc.2016.02.004_br0160","doi-asserted-by":"crossref","first-page":"4143","DOI":"10.1016\/j.na.2007.10.054","article-title":"Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop (II)","volume":"69","author":"Asheghi","year":"2008","journal-title":"Nonlinear Anal."},{"key":"10.1016\/j.jsc.2016.02.004_br0170","doi-asserted-by":"crossref","first-page":"1409","DOI":"10.1016\/j.camwa.2009.12.024","article-title":"Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop","volume":"59","author":"Asheghi","year":"2010","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jsc.2016.02.004_br0180","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1186\/1687-1847-2012-224","article-title":"Bifurcation of limit cycles from a hyper-elliptic Hamiltonian system with a double heteroclinic loops","volume":"2012","author":"Sun","year":"2012","journal-title":"Adv. Differ. Equ."},{"issue":"2","key":"10.1016\/j.jsc.2016.02.004_br0190","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1016\/j.na.2011.08.060","article-title":"On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems","volume":"75","author":"Kazemi","year":"2012","journal-title":"Nonlinear Anal."},{"key":"10.1016\/j.jsc.2016.02.004_br0200","doi-asserted-by":"crossref","DOI":"10.1142\/S0218127414500047","article-title":"Bifurcation of limit cycles in small perturbation of a class of Li\u00e9nard systems","volume":"24","author":"Sun","year":"2014","journal-title":"Int. J. Bifurc. Chaos"},{"key":"10.1016\/j.jsc.2016.02.004_br0210","first-page":"587","article-title":"Bifurcation of limit cycles for a class of quintic Hamiltonian system with double heteroclinic loops","volume":"48","author":"Qi","year":"2012","journal-title":"J. Beijing Normal University (Natural Science)"},{"key":"10.1016\/j.jsc.2016.02.004_br0220","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1016\/j.na.2013.09.020","article-title":"The perturbations of a class of hyper-elliptic Hamilton systems with a double homoclinic loop through a nilpotent saddle","volume":"95","author":"Zhao","year":"2014","journal-title":"Nonlinear Anal."},{"key":"10.1016\/j.jsc.2016.02.004_br0230","doi-asserted-by":"crossref","first-page":"2227","DOI":"10.1016\/j.jde.2010.11.004","article-title":"On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle","volume":"250","author":"Wang","year":"2011","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0240","series-title":"Perturbations of several planar integral system with denerate singularity","author":"Wang","year":"2012"},{"key":"10.1016\/j.jsc.2016.02.004_br0250","first-page":"299","article-title":"Bifurcation of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems of degree 5 with a cusp","volume":"1","author":"Atabaigi","year":"2011","journal-title":"J. Appl. Anal. Comput."},{"key":"10.1016\/j.jsc.2016.02.004_br0260","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1090\/S0002-9947-2010-05007-X","article-title":"A Chebyshev criterion for Abelian integrals","volume":"363","author":"Grau","year":"2011","journal-title":"Trans. Am. Math. Soc."},{"key":"10.1016\/j.jsc.2016.02.004_br0270","doi-asserted-by":"crossref","first-page":"1656","DOI":"10.1016\/j.jde.2011.05.026","article-title":"Bounding the number of zeros of certain Abelian integrals","volume":"251","author":"Ma\u00f1osas","year":"2011","journal-title":"J. Differ. Equ."},{"key":"10.1016\/j.jsc.2016.02.004_br0290","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1006\/jsco.1993.1011","article-title":"A generalized Euclidean algorithm for computing triangular representations of algebraic varieties","volume":"15","author":"Kalkbrener","year":"1993","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2016.02.004_br0300","series-title":"Artificial Intelligence in Mathematics","first-page":"147","article-title":"Searching dependency between algebraic equations: an algorithm applied to automated reasoning","author":"Yang","year":"1994"},{"key":"10.1016\/j.jsc.2016.02.004_br0310","series-title":"MEGA-2000 Conference","article-title":"On triangular decompositions of algebraic varieties","author":"Maza","year":"2000"},{"key":"10.1016\/j.jsc.2016.02.004_br0320","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1016\/j.jsc.2011.12.023","article-title":"Algorithms for computing triangular decomposition of polynomial systems","volume":"47","author":"Chen","year":"2012","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2016.02.004_br0340","series-title":"Computer Mathematics","article-title":"Real root isolation of regular chains","author":"Boulier","year":"2014"},{"key":"10.1016\/j.jsc.2016.02.004_br0350","series-title":"Computer Mathematics","first-page":"33","article-title":"Real root isolation of regular chains","author":"Boulier","year":"2014"},{"key":"10.1016\/j.jsc.2016.02.004_br0360","doi-asserted-by":"crossref","first-page":"923","DOI":"10.1007\/s10884-008-9108-3","article-title":"Limit cycles near homoclinic and heteroclinic loops","volume":"20","author":"Han","year":"2008","journal-title":"J. Dyn. Differ. Equ."},{"issue":"12","key":"10.1016\/j.jsc.2016.02.004_br0370","doi-asserted-by":"crossref","first-page":"4117","DOI":"10.1142\/S0218127409025250","article-title":"Hopf bifurcations for near-Hamiltonian systems","volume":"19","author":"Han","year":"2009","journal-title":"Int. J. Bifurc. Chaos"},{"issue":"22","key":"10.1016\/j.jsc.2016.02.004_br0380","doi-asserted-by":"crossref","first-page":"1250296","DOI":"10.1142\/S0218127412502963","article-title":"Asymptotic expansions of Melnikov functions and limit cycle bifurcations","volume":"2012","author":"Han","year":"2012","journal-title":"Int. J. Bifurc. Chaos"},{"key":"10.1016\/j.jsc.2016.02.004_br0390","series-title":"ISSAC '05","first-page":"354","article-title":"Stability analysis of biological systems with real solution classification","author":"Wang","year":"2005"},{"issue":"1\u20132","key":"10.1016\/j.jsc.2016.02.004_br0400","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1006\/jsco.1998.0278","article-title":"Polynomial systems from certain differential equations","volume":"28","author":"Wang","year":"1999","journal-title":"J. Symb. Comput."},{"issue":"2","key":"10.1016\/j.jsc.2016.02.004_br0410","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/S0747-7171(08)80127-7","article-title":"Mechanical manipulation for a class of differential systems","volume":"12","author":"Wang","year":"1991","journal-title":"J. Symb. Comput."},{"issue":"5","key":"10.1016\/j.jsc.2016.02.004_br0420","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1016\/S0747-7171(03)00016-6","article-title":"The Sibirsky component of the center variety of polynomial differential systems","volume":"35","author":"Jarraha","year":"2003","journal-title":"J. Symb. Comput."},{"issue":"10","key":"10.1016\/j.jsc.2016.02.004_br0430","doi-asserted-by":"crossref","first-page":"1163","DOI":"10.1016\/j.jsc.2011.12.039","article-title":"Isochronicity and normal forms of polynomial systems of ODEs","volume":"47","author":"Han","year":"2012","journal-title":"J. Symb. Comput."},{"issue":"9","key":"10.1016\/j.jsc.2016.02.004_br0440","doi-asserted-by":"crossref","first-page":"943","DOI":"10.1016\/j.jsc.2006.04.007","article-title":"A necessary condition in the monodromy problem for analytic differential equations on the plane","volume":"41","author":"Garc\u00eda","year":"2006","journal-title":"J. Symb. Comput."},{"issue":"10","key":"10.1016\/j.jsc.2016.02.004_br0450","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.1016\/j.jsc.2011.12.037","article-title":"Symbolic computation and the cyclicity problem for singularities","volume":"47","author":"Shafer","year":"2012","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2016.02.004_br0460","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.jsc.2013.03.006","article-title":"Symbolic computation of strongly nonlinear periodic oscillations","volume":"55","author":"Li","year":"2013","journal-title":"J. Symb. Comput."},{"key":"10.1016\/j.jsc.2016.02.004_br0470","doi-asserted-by":"crossref","first-page":"1350154","DOI":"10.1142\/S021812741350154X","article-title":"An application of regular chain theory to the study of limit cycles","volume":"23","author":"Chen","year":"2013","journal-title":"Int. J. Bifurc. Chaos"}],"container-title":["Journal of Symbolic Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0747717116000134?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0747717116000134?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,28]],"date-time":"2021-02-28T20:37:16Z","timestamp":1614544636000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0747717116000134"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":42,"alternative-id":["S0747717116000134"],"URL":"https:\/\/doi.org\/10.1016\/j.jsc.2016.02.004","relation":{},"ISSN":["0747-7171"],"issn-type":[{"value":"0747-7171","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bounding the number of limit cycles for a polynomial Li\u00e9nard system by using regular chains","name":"articletitle","label":"Article Title"},{"value":"Journal of Symbolic Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jsc.2016.02.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}