{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:17:52Z","timestamp":1722471472846},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,2,18]],"date-time":"2021-02-18T00:00:00Z","timestamp":1613606400000},"content-version":"am","delay-in-days":293,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000001","name":"NSF, United States of America","doi-asserted-by":"publisher","award":["CNS-1565314","CNS-1838271"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Parallel and Distributed Computing"],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1016\/j.jpdc.2020.01.005","type":"journal-article","created":{"date-parts":[[2020,2,8]],"date-time":"2020-02-08T16:17:59Z","timestamp":1581178679000},"page":"87-98","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Modeling I\/O performance variability in high-performance computing systems using mixture distributions"],"prefix":"10.1016","volume":"139","author":[{"given":"Li","family":"Xu","sequence":"first","affiliation":[]},{"given":"Yueyao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Lux","sequence":"additional","affiliation":[]},{"given":"Tyler","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Jon","family":"Bernard","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yili","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Kirk","family":"Cameron","sequence":"additional","affiliation":[]},{"given":"Layne","family":"Watson","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jpdc.2020.01.005_b1","series-title":"Selected Papers of Hirotugu Akaike","first-page":"199","article-title":"Information theory and an extension of the maximum likelihood principle","author":"Akaike","year":"1998"},{"key":"10.1016\/j.jpdc.2020.01.005_b2","series-title":"Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International","first-page":"1081","article-title":"Towards managing variability in the cloud","author":"Anwar","year":"2016"},{"key":"10.1016\/j.jpdc.2020.01.005_b3","series-title":"European Conference on Parallel Processing","first-page":"185","article-title":"Performance modeling: Understanding the past and predicting the future","author":"Bailey","year":"2005"},{"issue":"11","key":"10.1016\/j.jpdc.2020.01.005_b4","doi-asserted-by":"crossref","DOI":"10.1109\/MC.2009.372","article-title":"Using performance modeling to design large-scale systems","volume":"42","author":"Barker","year":"2009","journal-title":"Computer"},{"issue":"1","key":"10.1016\/j.jpdc.2020.01.005_b5","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10586-007-0047-2","article-title":"Benchmarking the effects of operating system interference on extreme-scale parallel machines","volume":"11","author":"Beckman","year":"2008","journal-title":"Cluster Comput."},{"issue":"8","key":"10.1016\/j.jpdc.2020.01.005_b6","doi-asserted-by":"crossref","first-page":"1843","DOI":"10.1109\/TPDS.2019.2892129","article-title":"MOANA: Modeling and analyzing I\/O variability in parallel system experimental design","volume":"30","author":"Cameron","year":"2019","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.jpdc.2020.01.005_b7","series-title":"Proceedings of the High Performance Computing Symposium","first-page":"12","article-title":"Predicting system performance by interpolation using a high-dimensional Delaunay triangulation","author":"Chang","year":"2018"},{"key":"10.1016\/j.jpdc.2020.01.005_b8","series-title":"IEEE International Conference on Cluster Computing","first-page":"331","article-title":"Identifying sources of operating system jitter through fine-grained kernel instrumentation","author":"De","year":"2007"},{"key":"10.1016\/j.jpdc.2020.01.005_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"7","key":"10.1016\/j.jpdc.2020.01.005_b10","doi-asserted-by":"crossref","first-page":"1575","DOI":"10.1109\/TPDS.2017.2766151","article-title":"Quantifying the impact of variability and heterogeneity on the energy efficiency for a next-generation ultra-green supercomputer","volume":"29","author":"Fraternali","year":"2018","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"10","key":"10.1016\/j.jpdc.2020.01.005_b11","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1177\/0037549707084939","article-title":"FASE: A framework for scalable performance prediction of HPC systems and applications","volume":"83","author":"Grobelny","year":"2007","journal-title":"Simulation"},{"issue":"2","key":"10.1016\/j.jpdc.2020.01.005_b12","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s10985-013-9245-9","article-title":"Confidence interval procedures for system reliability and applications to competing risks models","volume":"20","author":"Hong","year":"2014","journal-title":"Lifetime Data Anal."},{"key":"10.1016\/j.jpdc.2020.01.005_b13","unstructured":"IOzone filesystem benchmark, URL http:\/\/http:\/\/www.iozone.org\/."},{"key":"10.1016\/j.jpdc.2020.01.005_b14","series-title":"Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science","first-page":"159","article-title":"Performance analysis of high performance computing applications on the Amazon web services cloud","author":"Jackson","year":"2010"},{"key":"10.1016\/j.jpdc.2020.01.005_b15","series-title":"International Conference on Computational Science","first-page":"560","article-title":"Performance variability of highly parallel architectures","author":"Kramer","year":"2003"},{"key":"10.1016\/j.jpdc.2020.01.005_b16","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.jpdc.2017.11.012","article-title":"Efficiency analysis methodology of FPGAs based on lost frequencies, area and cycles","volume":"113","author":"Lemeire","year":"2018","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.jpdc.2020.01.005_b17","series-title":"International Conference on High Performance Computing, Networking, Storage and Analysis (SC), 2010","first-page":"1","article-title":"Managing variability in the I\/O performance of petascale storage systems","author":"Lofstead","year":"2010"},{"key":"10.1016\/j.jpdc.2020.01.005_b18","series-title":"Proceedings of the High Performance Computing Symposium","first-page":"8","article-title":"Predictive modeling of I\/O characteristics in high performance computing systems","author":"Lux","year":"2018"},{"key":"10.1016\/j.jpdc.2020.01.005_b19","series-title":"SoutheastCon 2018","first-page":"1","article-title":"Nonparametric distribution models for predicting and managing computational performance variability","author":"Lux","year":"2018"},{"key":"10.1016\/j.jpdc.2020.01.005_b20","series-title":"Proceedings of the ACMSE 2018 Conference","first-page":"13","article-title":"Novel meshes for multivariate interpolation and approximation","author":"Lux","year":"2018"},{"key":"10.1016\/j.jpdc.2020.01.005_b21","series-title":"13th USENIX Symposium on Operating Systems Design and Implementation","first-page":"409","article-title":"Taming performance variability","author":"Maricq","year":"2018"},{"key":"10.1016\/j.jpdc.2020.01.005_b22","doi-asserted-by":"crossref","unstructured":"R. Mraz, Reducing the variance of point to point transfers in the IBM 9076 parallel computer, in: Supercomputing \u201994: Proceedings of the 1994 ACM\/IEEE Conference on Supercomputing, 1994, pp. 620\u2013629.","DOI":"10.1145\/602770.602873"},{"issue":"767","key":"10.1016\/j.jpdc.2020.01.005_b23","first-page":"333","article-title":"Outline of a theory of statistical estimation based on the classical theory of probability","volume":"236","author":"Neyman","year":"1937","journal-title":"Phil. Trans. R. Soc. A"},{"key":"10.1016\/j.jpdc.2020.01.005_b24","series-title":"Global Communications Conference (GLOBECOM), 2015 IEEE","first-page":"1","article-title":"On network throughput variability in Microsoft Azure cloud","author":"Persico","year":"2015"},{"key":"10.1016\/j.jpdc.2020.01.005_b25","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.jpdc.2017.10.013","article-title":"Performance considerations for scalable parallel tensor decomposition","volume":"129","author":"Rolinger","year":"2019","journal-title":"J. Parallel Distrib. Comput."},{"issue":"2","key":"10.1016\/j.jpdc.2020.01.005_b26","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","article-title":"Estimating the dimension of a model","volume":"6","author":"Schwarz","year":"1978","journal-title":"Ann. Statist."},{"key":"10.1016\/j.jpdc.2020.01.005_b27","series-title":"Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition","first-page":"387","article-title":"Variability-aware dark silicon management in on-chip many-core systems","author":"Shafique","year":"2015"},{"year":"2016","series-title":"Analysis of Application Sensitivity to System Performance Variability in a Dynamic Task Based Runtime","author":"Shipman","key":"10.1016\/j.jpdc.2020.01.005_b28"},{"key":"10.1016\/j.jpdc.2020.01.005_b29","series-title":"Supercomputing, ACM\/IEEE Conference","first-page":"21","article-title":"A framework for performance modeling and prediction","author":"Snavely","year":"2002"},{"key":"10.1016\/j.jpdc.2020.01.005_b30","first-page":"49","article-title":"Maximum likelihood theory for incomplete data from an exponential family","volume":"1","author":"Sundberg","year":"1974","journal-title":"Scand. J. Stat."},{"key":"10.1016\/j.jpdc.2020.01.005_b31","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.jpdc.2018.05.005","article-title":"Fast classification of MPI applications using Lamports logical clocks","volume":"120","author":"Tong","year":"2018","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.jpdc.2020.01.005_b32","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/j.jpdc.2017.11.005","article-title":"Aspen-based performance and energy modeling frameworks","volume":"120","author":"Umar","year":"2018","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.jpdc.2020.01.005_b33","unstructured":"G. Wang, A.R. Butt, P. Pandey, K. Gupta, A simulation approach to evaluating design decisions in MapReduce setups, in: 2009 IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecommunication Systems, 2009, pp. 1\u201311."},{"key":"10.1016\/j.jpdc.2020.01.005_b34","series-title":"12th IEEE International Conference on High Performance Computing and Communications","first-page":"273","article-title":"Analyzing and modeling the performance in Xen-Based virtual cluster environment","author":"Ye","year":"2010"},{"key":"10.1016\/j.jpdc.2020.01.005_b35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jpdc.2015.06.006","article-title":"Quantitative modeling of power performance tradeoffs on extreme scale systems","volume":"84","author":"Yu","year":"2015","journal-title":"J. Parallel Distrib. Comput."}],"container-title":["Journal of Parallel and Distributed Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0743731519302746?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0743731519302746?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T09:47:26Z","timestamp":1722419246000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0743731519302746"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":35,"alternative-id":["S0743731519302746"],"URL":"https:\/\/doi.org\/10.1016\/j.jpdc.2020.01.005","relation":{},"ISSN":["0743-7315"],"issn-type":[{"type":"print","value":"0743-7315"}],"subject":[],"published":{"date-parts":[[2020,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modeling I\/O performance variability in high-performance computing systems using mixture distributions","name":"articletitle","label":"Article Title"},{"value":"Journal of Parallel and Distributed Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jpdc.2020.01.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}