{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T13:24:57Z","timestamp":1726493097621},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,2,6]],"date-time":"2020-02-06T00:00:00Z","timestamp":1580947200000},"content-version":"am","delay-in-days":281,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000015","name":"U.S. Department of Energy","doi-asserted-by":"publisher","award":["DE-AC02-05CH11231"],"id":[{"id":"10.13039\/100000015","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006507","name":"MIT Deshpande Center for Numerical Innovation, United States","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006507","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Intel Technology Science Center for Big Data at MIT, United States"},{"DOI":"10.13039\/100000185","name":"DARPA","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000185","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Singapore MIT Alliance"},{"name":"National Science Foundation, United States","award":["DMS-1016125"]},{"DOI":"10.13039\/100000015","name":"DOE, United States","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000015","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000936","name":"Gordon and Betty Moore Foundation, United States","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000936","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Parallel and Distributed Computing"],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1016\/j.jpdc.2018.12.008","type":"journal-article","created":{"date-parts":[[2019,1,21]],"date-time":"2019-01-21T22:58:40Z","timestamp":1548111520000},"page":"89-104","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Cataloging the visible universe through Bayesian inference in Julia at petascale"],"prefix":"10.1016","volume":"127","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1472-5235","authenticated-orcid":false,"given":"Jeffrey","family":"Regier","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7467-0953","authenticated-orcid":false,"given":"Keno","family":"Fischer","sequence":"additional","affiliation":[]},{"given":"Kiran","family":"Pamnany","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3726-1039","authenticated-orcid":false,"given":"Andreas","family":"Noack","sequence":"additional","affiliation":[]},{"given":"Jarrett","family":"Revels","sequence":"additional","affiliation":[]},{"given":"Maximilian","family":"Lam","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5264-9088","authenticated-orcid":false,"given":"Steve","family":"Howard","sequence":"additional","affiliation":[]},{"given":"Ryan","family":"Giordano","sequence":"additional","affiliation":[]},{"given":"David","family":"Schlegel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2626-7320","authenticated-orcid":false,"given":"Jon","family":"McAuliffe","sequence":"additional","affiliation":[]},{"given":"Rollin","family":"Thomas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3281-5186","authenticated-orcid":false,"family":"Prabhat","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.jpdc.2018.12.008_b1","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1088\/0067-0049\/219\/1\/12","article-title":"The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III","volume":"219","author":"Alam","year":"2015","journal-title":"Astrophys. J. Suppl. Ser."},{"issue":"2","key":"10.1016\/j.jpdc.2018.12.008_b2","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1109\/MCSE.2010.118","article-title":"Cython: The best of both worlds","volume":"13","author":"Behnel","year":"2011","journal-title":"Comput. Sci. Eng."},{"issue":"2","key":"10.1016\/j.jpdc.2018.12.008_b3","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1051\/aas:1996164","article-title":"Sextractor: Software for source extraction","volume":"117","author":"Bertin","year":"1996","journal-title":"Astron. Astrophys. Suppl. Ser."},{"issue":"1","key":"10.1016\/j.jpdc.2018.12.008_b4","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1137\/141000671","article-title":"Julia: A fresh approach to numerical computing","volume":"59","author":"Bezanson","year":"2017","journal-title":"SIAM Rev."},{"key":"10.1016\/j.jpdc.2018.12.008_b5","unstructured":"Wahid Bhimji, Debbie Bard, Melissa Romanus, David Paul, et al. Accelerating science with the NERSC burst buffer early user program, in: Cray User Group 2016 Proceedings, 2016."},{"year":"2006","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","key":"10.1016\/j.jpdc.2018.12.008_b6"},{"key":"10.1016\/j.jpdc.2018.12.008_b7","doi-asserted-by":"crossref","DOI":"10.1080\/01621459.2017.1285773","article-title":"Variational inference: A review for statisticians","author":"Blei","year":"2017","journal-title":"J. Amer. Statist. Assoc."},{"issue":"1","key":"10.1016\/j.jpdc.2018.12.008_b8","doi-asserted-by":"crossref","DOI":"10.1088\/0004-6256\/146\/1\/7","article-title":"Probabilistic catalogs for crowded stellar fields","volume":"146","author":"Brewer","year":"2013","journal-title":"Astron. J."},{"key":"10.1016\/j.jpdc.2018.12.008_b9","unstructured":"Yuri Burda, Roger Grosse, Ruslan Salakhutdinov, Importance weighted autoencoders, in: arXiv preprint arXiv:1509.00519, 2015."},{"issue":"6114","key":"10.1016\/j.jpdc.2018.12.008_b10","doi-asserted-by":"crossref","first-page":"1569","DOI":"10.1126\/science.1230816","article-title":"A new boson with a mass of 125 GeV observed with the CMS experiment at the large hadron collider","volume":"338","year":"2012","journal-title":"Science"},{"year":"2018","series-title":"Julia micro-benchmarks","key":"10.1016\/j.jpdc.2018.12.008_b11"},{"year":"2018","series-title":"Performance tips","key":"10.1016\/j.jpdc.2018.12.008_b12"},{"year":"2018","series-title":"StaticArrays.jl","author":"Ferris","key":"10.1016\/j.jpdc.2018.12.008_b13"},{"key":"10.1016\/j.jpdc.2018.12.008_b14","unstructured":"Ryan Giordano, Tamara Broderick, Michael Jordan, Linear response methods for accurate covariance estimates from mean field variational Bayes, in: Advances in Neural Information Processing Systems, 2015, pp. 1441\u20131449."},{"issue":"2","key":"10.1016\/j.jpdc.2018.12.008_b15","doi-asserted-by":"crossref","first-page":"9:1","DOI":"10.1145\/2780584","article-title":"Remote memory access programming in MPI-3","volume":"2","author":"Hoefler","year":"2015","journal-title":"ACM Trans. Parallel Comput."},{"issue":"1","key":"10.1016\/j.jpdc.2018.12.008_b16","first-page":"1303","article-title":"Stochastic variational inference","volume":"14","author":"Hoffman","year":"2013","journal-title":"J. Mach. Learn. Res."},{"year":"2014","series-title":"Harness Oil and Gas Big Data with Analytics: Optimize Exploration and Production with Data-driven Models","author":"Holdaway","key":"10.1016\/j.jpdc.2018.12.008_b17"},{"year":"2018","series-title":"StructsOfArrays.jl","author":"Kornblith","key":"10.1016\/j.jpdc.2018.12.008_b18"},{"year":"2018","series-title":"The tractor","author":"Lang","key":"10.1016\/j.jpdc.2018.12.008_b19"},{"article-title":"LLVM: A compilation framework for lifelong program analysis & transformation","year":"2004","series-title":"Proceedings of the International Symposium on Code Generation and Optimization","author":"Lattner","key":"10.1016\/j.jpdc.2018.12.008_b20"},{"year":"2005","series-title":"SDSS image processing II: The photo pipelines","author":"Lupton","key":"10.1016\/j.jpdc.2018.12.008_b21"},{"year":"2016","series-title":"Static and ahead of time (AOT) compiled Julia","author":"Nash","key":"10.1016\/j.jpdc.2018.12.008_b22"},{"issue":"2","key":"10.1016\/j.jpdc.2018.12.008_b23","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1177\/1094342006064503","article-title":"Advances, applications and performance of the global arrays shared memory programming toolkit","volume":"20","author":"Nieplocha","year":"2006","journal-title":"Int. J. High Perform. Comput. Appl."},{"issue":"3","key":"10.1016\/j.jpdc.2018.12.008_b24","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1109\/2.660187","article-title":"Scripting: Higher level programming for the 21st century","volume":"31","author":"Ousterhout","year":"1998","journal-title":"Computer"},{"key":"10.1016\/j.jpdc.2018.12.008_b25","series-title":"International Conference on High Performance Computing","first-page":"122","article-title":"Dtree: Dynamic task scheduling at petascale","author":"Pamnany","year":"2015"},{"key":"10.1016\/j.jpdc.2018.12.008_b26","unstructured":"Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris Papailiopoulos, Ce Zhang, Michael Jordan, Kannan Ramchandran, Christopher R\u00e9, Cyclades: Conflict-free asynchronous machine learning, in: Advances in Neural Information Processing Systems, 2016."},{"issue":"4","key":"10.1016\/j.jpdc.2018.12.008_b27","doi-asserted-by":"crossref","DOI":"10.3847\/1538-3881\/aa8565","article-title":"Improved point-source detection in crowded fields using probabilistic cataloging","volume":"154","author":"Portillo","year":"2017","journal-title":"Astron. J."},{"key":"10.1016\/j.jpdc.2018.12.008_b28","unstructured":"Feng Qiang, Cosmin Petra, Miles Lubin, Joey Huchette, Mihai Anitescu, On efficient Hessian computation using the edge pushing algorithm in Julia, in: Proceedings of the 7th International Conference on Algorithmic Differentiation, 2016."},{"key":"10.1016\/j.jpdc.2018.12.008_b29","unstructured":"Benjamin Recht, Christopher Re, Stephen Wright, Feng Niu, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, in: Advances in Neural Information Processing Systems, 2011."},{"key":"10.1016\/j.jpdc.2018.12.008_b30","unstructured":"Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan Adams, Matt Hoffman, Dustin Lang, David Schlegel, Prabhat, Celeste: Variational inference for a generative model of astronomical images, in: Proceedings of the 32nd International Conference on Machine Learning, 2015."},{"key":"10.1016\/j.jpdc.2018.12.008_b31","doi-asserted-by":"crossref","unstructured":"Jeffrey Regier, Kiran Pamnany, Keno Fischer, Andreas Noack, Maximilian Lam, Jarrett Revels, Steve Howard, Ryan Giordano, David Schlegel, Jon McAuliffe, Rollin Thomas, Prabhat, Cataloging the visible universe through Bayesian inference at petascale, in: International Parallel and Distributed Processing Symposium, IPDPS, 2018.","DOI":"10.1109\/IPDPS.2018.00015"},{"year":"2018","series-title":"ReverseDiff.jl","author":"Revels","key":"10.1016\/j.jpdc.2018.12.008_b32"},{"year":"2018","series-title":"Utilizing AD for Celeste\u2019s KL divergence calculations","author":"Revels","key":"10.1016\/j.jpdc.2018.12.008_b33"},{"key":"10.1016\/j.jpdc.2018.12.008_b34","unstructured":"J. Revels, M. Lubin, T. Papamarkou, Forward-Mode automatic differentiation in julia, in: Proceedings of the 7th International Conference on Algorithmic Differentiation, 2016."},{"key":"10.1016\/j.jpdc.2018.12.008_b35","unstructured":"Danilo\u00a0Jimenez Rezende, Shakir Mohamed, Variational inference with normalizing flows, in: arXiv preprint arXiv:1505.05770, 2015."},{"key":"10.1016\/j.jpdc.2018.12.008_b36","unstructured":"Tim Stitt, An introduction to the partitioned global address space programming model."},{"key":"10.1016\/j.jpdc.2018.12.008_b37","unstructured":"Large synoptic survey telescope consortium, in: About LSST, 2018. http:\/\/www.lsst.org\/about. Online, (Accessed 3 July 2018)."},{"year":"2018","series-title":"PackageCompiler.jl","author":"Trevisani","key":"10.1016\/j.jpdc.2018.12.008_b38"},{"key":"10.1016\/j.jpdc.2018.12.008_b39","doi-asserted-by":"crossref","unstructured":"Peter Vincent, Freddie Witherden, Brian Vermeire, Jin\u00a0Seok Park, Arvind Iyer, Towards green aviation with python at petascale, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC\u201916, 2016.","DOI":"10.1109\/SC.2016.1"},{"issue":"2","key":"10.1016\/j.jpdc.2018.12.008_b40","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/MCSE.2011.37","article-title":"The NumPy array: A structure for efficient numerical computation","volume":"13","author":"Walt","year":"2011","journal-title":"Comput. Sci. Eng."},{"key":"10.1016\/j.jpdc.2018.12.008_b41","doi-asserted-by":"crossref","unstructured":"Michael\u00a0S. Warren, Steven\u00a0P. Brumby, et al. Seeing the earth in the cloud: Processing one petabyte of satellite imagery in one day, in: IEEE Applied Imagery Pattern Recognition Workshop, AIPR, 2015, pp. 1\u201312.","DOI":"10.1109\/AIPR.2015.7444536"},{"key":"10.1016\/j.jpdc.2018.12.008_b42","first-page":"67","article-title":"Numerical optimization","volume":"35","author":"Wright","year":"1999","journal-title":"Springer Sci."}],"container-title":["Journal of Parallel and Distributed Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0743731518304672?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0743731518304672?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,18]],"date-time":"2021-04-18T11:44:23Z","timestamp":1618746263000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0743731518304672"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5]]},"references-count":42,"alternative-id":["S0743731518304672"],"URL":"https:\/\/doi.org\/10.1016\/j.jpdc.2018.12.008","relation":{},"ISSN":["0743-7315"],"issn-type":[{"type":"print","value":"0743-7315"}],"subject":[],"published":{"date-parts":[[2019,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cataloging the visible universe through Bayesian inference in Julia at petascale","name":"articletitle","label":"Article Title"},{"value":"Journal of Parallel and Distributed Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jpdc.2018.12.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}