{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T20:33:56Z","timestamp":1726346036574},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003621","name":"Ministry of Science, ICT and Future Planning","doi-asserted-by":"publisher","award":["2022R1A2C1003844"],"id":[{"id":"10.13039\/501100003621","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100015260","name":"Macau University of Science and Technology","doi-asserted-by":"publisher","award":["FRG-24-026-FIE"],"id":[{"id":"10.13039\/501100015260","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Science"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.jocs.2024.102252","type":"journal-article","created":{"date-parts":[[2024,2,28]],"date-time":"2024-02-28T11:49:08Z","timestamp":1709120948000},"page":"102252","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["The Allen\u2013Cahn equation with a space-dependent mobility and a source term for general motion by mean curvature"],"prefix":"10.1016","volume":"77","author":[{"given":"Junxiang","family":"Yang","sequence":"first","affiliation":[]},{"given":"Seungyoon","family":"Kang","sequence":"additional","affiliation":[]},{"given":"Soobin","family":"Kwak","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0484-9189","authenticated-orcid":false,"given":"Junseok","family":"Kim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jocs.2024.102252_b1","doi-asserted-by":"crossref","first-page":"1085","DOI":"10.1016\/0001-6160(79)90196-2","article-title":"A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening","volume":"27","author":"Allen","year":"1979","journal-title":"Acta Metall."},{"key":"10.1016\/j.jocs.2024.102252_b2","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1016\/j.apnum.2020.11.022","article-title":"Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge\u2013Kutta schemes for Allen\u2013Cahn equation","volume":"161","author":"Zhang","year":"2021","journal-title":"Appl. Numer. Math."},{"issue":"2","key":"10.1016\/j.jocs.2024.102252_b3","doi-asserted-by":"crossref","first-page":"540","DOI":"10.4208\/nmtma.OA-2020-0023","article-title":"Phase-field modeling and numerical simulation for ice melting","volume":"14","author":"Wang","year":"2021","journal-title":"Numer. Math. Theor. Meth. Appl."},{"issue":"6","key":"10.1016\/j.jocs.2024.102252_b4","doi-asserted-by":"crossref","first-page":"1517","DOI":"10.4310\/CMS.2016.v14.n6.a3","article-title":"On the maximum principle preserving schemes for the generalized Allen\u2013Cahn equation","volume":"14","author":"Shen","year":"2016","journal-title":"Commun. Math. Sci."},{"key":"10.1016\/j.jocs.2024.102252_b5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00030-017-0477-3","article-title":"Stochastic Allen\u2013Cahn equation with mobility","volume":"24","author":"Bertini","year":"2017","journal-title":"NoDea-Nonlinear Differ. Equ. Appl."},{"issue":"3","key":"10.1016\/j.jocs.2024.102252_b6","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1007\/s00526-022-02199-3","article-title":"Homogenization of the Allen\u2013Cahn equation with periodic mobility","volume":"61","author":"Morfe","year":"2022","journal-title":"Calc. Var. Partial. Differ. Equ."},{"issue":"2","key":"10.1016\/j.jocs.2024.102252_b7","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1137\/140960189","article-title":"Sharp-Interface limits of the Cahn\u2013Hilliard equation with degenerate mobility","volume":"76","author":"Lee","year":"2016","journal-title":"SIAM J. Appl. Math."},{"key":"10.1016\/j.jocs.2024.102252_b8","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.matcom.2022.05.024","article-title":"A second-order maximum bound principle preserving operator splitting method for the Allen\u2013Cahn equation with applications in multi-phase systems","volume":"202","author":"Xiao","year":"2022","journal-title":"Math. Comput. Simulation"},{"key":"10.1016\/j.jocs.2024.102252_b9","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.4208\/nmtma.OA-2022-0008s","article-title":"Two-phase image segmentation by the Allen\u2013Cahn equation and a nonlocal edge detection operator","volume":"15","author":"Qiao","year":"2022","journal-title":"Numer. Math. Theor. Meth. Appl."},{"key":"10.1016\/j.jocs.2024.102252_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2021.105766","article-title":"Linear energy stable and maximum principle preserving semi-implicit scheme for Allen\u2013Cahn equation with double well potential","volume":"98","author":"Wang","year":"2021","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.jocs.2024.102252_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jocs.2018.02.011","article-title":"The parallel multi-physics phase-field framework Pace3D","volume":"26","author":"H\u00f6tzer","year":"2018","journal-title":"J. Comput. Sci."},{"key":"10.1016\/j.jocs.2024.102252_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.aml.2021.107179","article-title":"A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for Allen\u2013Cahn equations","volume":"118","author":"Feng","year":"2021","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.jocs.2024.102252_b13","doi-asserted-by":"crossref","DOI":"10.1007\/s11075-022-01411-x","article-title":"Third-order accurate, large time-stepping and maximum-principle-preserving schemes for the Allen\u2013Cahn equation","author":"Zhang","year":"2023","journal-title":"Numer. Algor."},{"key":"10.1016\/j.jocs.2024.102252_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocs.2022.101834","article-title":"An ordered active parameter tracking method for efficient multiphase field simulations","volume":"64","author":"Sitompul","year":"2022","journal-title":"J. Comput. Sci."},{"key":"10.1016\/j.jocs.2024.102252_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.aml.2020.106265","article-title":"A new second-order maximum-principle preserving finite difference scheme for Allen\u2013Cahn equations with periodic boundary conditions","volume":"104","author":"Hou","year":"2020","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.jocs.2024.102252_b16","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.apnum.2021.04.010","article-title":"The discrete maximum principle and energy stability of a new second-order difference scheme for Allen\u2013Cahn equations","volume":"166","author":"Tan","year":"2021","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jocs.2024.102252_b17","article-title":"Discrete maximum principle and energy stability of the compact difference scheme for two-dimensional Allen\u2013Cahn equation","volume":"2022","author":"Bo","year":"2022","journal-title":"J. Funct. Spaces"},{"key":"10.1016\/j.jocs.2024.102252_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocs.2023.102114","article-title":"Fractal feature analysis based on phase transitions of the Allen\u2013Cahn and Cahn\u2013Hilliard equations","volume":"72","author":"Wang","year":"2023","journal-title":"J. Comput. Sci."},{"key":"10.1016\/j.jocs.2024.102252_b19","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.apnum.2023.08.010","article-title":"High-order unconditionally maximum-principle-preserving parametric integrating factor Runge\u2013Kutta schemes for the nonlocal Allen\u2013Cahn equation","volume":"194","author":"Gao","year":"2023","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jocs.2024.102252_b20","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.apnum.2023.03.002","article-title":"High-order, unconditionally maximum-principle preserving finite element method for the Allen\u2013Cahn equation","volume":"188","author":"Yang","year":"2023","journal-title":"Appl. Numer. Math."},{"issue":"3","key":"10.1016\/j.jocs.2024.102252_b21","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1017\/S0956792500002369","article-title":"The Cahn\u2013Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature","volume":"7","author":"Cahn","year":"1996","journal-title":"European J. Appl. Math."},{"issue":"2","key":"10.1016\/j.jocs.2024.102252_b22","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1137\/S0036141094267662","article-title":"On the Cahn\u2013Hilliard equation with degenerate mobility","volume":"27","author":"Elliott","year":"1996","journal-title":"SIAM J. Numer. Anal."},{"issue":"8","key":"10.1016\/j.jocs.2024.102252_b23","doi-asserted-by":"crossref","first-page":"1560","DOI":"10.1016\/j.cnsns.2006.02.010","article-title":"A numerical method for the Cahn\u2013Hilliard equation with a variable mobility","volume":"12","author":"Kim","year":"2007","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.jocs.2024.102252_b24","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.jcp.2016.01.018","article-title":"Computational studies of coarsening rates for the Cahn\u2013Hilliard equation with phase-dependent diffusion mobility","volume":"310","author":"Dai","year":"2016","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jocs.2024.102252_b25","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.physa.2015.03.012","article-title":"A second order operator splitting method for Allen\u2013Cahn type equations with nonlinear source terms","volume":"432","author":"Lee","year":"2015","journal-title":"Phys. A"},{"issue":"5","key":"10.1016\/j.jocs.2024.102252_b26","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1080\/10407790.2016.1215714","article-title":"Analysis of the operator splitting scheme for the Allen\u2013Cahn equation","volume":"70","author":"Weng","year":"2016","journal-title":"Numer. Heat Transfer, Part B: Fundam."},{"issue":"3","key":"10.1016\/j.jocs.2024.102252_b27","doi-asserted-by":"crossref","first-page":"1290","DOI":"10.1002\/num.22350","article-title":"Adaptive operator splitting finite element method for Allen\u2013Cahn equation","volume":"35","author":"Huang","year":"2019","journal-title":"Numer. Methods Partial Differ. Eq."},{"key":"10.1016\/j.jocs.2024.102252_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.aml.2022.108016","article-title":"An effective operator splitting scheme for two-dimensional conservative nonlocal Allen\u2013Cahn equation","volume":"130","author":"Cui","year":"2022","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.jocs.2024.102252_b29","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1016\/j.matcom.2023.01.016","article-title":"Stability analysis for a maximum principle preserving explicit scheme of the Allen\u2013Cahn equation","volume":"207","author":"Ham","year":"2023","journal-title":"Math. Comput. Simulation"},{"issue":"9","key":"10.1016\/j.jocs.2024.102252_b30","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1002\/cpa.3160450903","article-title":"Phase transitions and generalized motion by mean curvature","volume":"45","author":"Evans","year":"1992","journal-title":"Comm. Pure Appl. Math."},{"issue":"2","key":"10.1016\/j.jocs.2024.102252_b31","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1137\/19M1243750","article-title":"Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes","volume":"63","author":"Du","year":"2021","journal-title":"SIAM Rev."},{"key":"10.1016\/j.jocs.2024.102252_b32","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1016\/j.apnum.2020.11.022","article-title":"Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge\u2013Kutta schemes for Allen\u2013Cahn equation","volume":"161","author":"Zhang","year":"2021","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jocs.2024.102252_b33","series-title":"Matlab","author":"MathWorks","year":"2023"},{"key":"10.1016\/j.jocs.2024.102252_b34","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/3980181","article-title":"Image segmentation based on modified fractional Allen\u2013Cahn equation","volume":"2019","author":"Lee","year":"2019","journal-title":"Math. Prob. Eng."},{"key":"10.1016\/j.jocs.2024.102252_b35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10444-020-09835-6","article-title":"A stable second-order BDF scheme for the three-dimensional Cahn\u2013Hilliard\u2013Hele\u2013Shaw system","volume":"47","author":"Li","year":"2021","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.jocs.2024.102252_b36","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.apnum.2022.12.020","article-title":"Temporal high-order, unconditionally maximum-principle-preserving integrating factor multi-step methods for Allen\u2013Cahn-type parabolic equations","volume":"186","author":"Zhang","year":"2023","journal-title":"Appl. Numer. Math."}],"container-title":["Journal of Computational Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877750324000450?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877750324000450?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,23]],"date-time":"2024-03-23T09:39:30Z","timestamp":1711186770000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877750324000450"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":36,"alternative-id":["S1877750324000450"],"URL":"https:\/\/doi.org\/10.1016\/j.jocs.2024.102252","relation":{},"ISSN":["1877-7503"],"issn-type":[{"value":"1877-7503","type":"print"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The Allen\u2013Cahn equation with a space-dependent mobility and a source term for general motion by mean curvature","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jocs.2024.102252","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102252"}}