{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:55:21Z","timestamp":1740106521798,"version":"3.37.3"},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61672136","61828202"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004829","name":"Department of Science and Technology of Sichuan Province","doi-asserted-by":"publisher","award":["2021YFG0325"],"id":[{"id":"10.13039\/501100004829","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005408","name":"University of Electronic Science and Technology of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005408","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018AAA0103203"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Network and Computer Applications"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.jnca.2022.103520","type":"journal-article","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T11:00:22Z","timestamp":1664276422000},"page":"103520","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["Deep reinforcement learning-based algorithms selectors for the resource scheduling in hierarchical Cloud computing"],"prefix":"10.1016","volume":"208","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0809-5799","authenticated-orcid":false,"given":"Guangyao","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Ruiming","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Wenhong","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Rajkumar","family":"Buyya","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jnca.2022.103520_b1","series-title":"International Conference on Next Generation Computing Technologies","first-page":"110","article-title":"Enhanced task scheduling algorithm using multi-objective function for cloud computing framework","author":"Abhikriti","year":"2017"},{"issue":"4","key":"10.1016\/j.jnca.2022.103520_b2","first-page":"68:1","article-title":"A survey on scheduling strategies for workflows in cloud environment and emerging trends","volume":"52","author":"Adhikari","year":"2019","journal-title":"ACM Comput. Surv."},{"issue":"1","key":"10.1016\/j.jnca.2022.103520_b3","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1007\/s11277-020-08001-x","article-title":"Hybrid heuristic algorithm for better energy optimization and resource utilization in cloud computing","volume":"118","author":"Al-Mahruqi","year":"2021","journal-title":"Wirel. Pers. Commun."},{"issue":"4","key":"10.1016\/j.jnca.2022.103520_b4","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1145\/1721654.1721672","article-title":"A view of cloud computing","volume":"53","author":"Armbrust","year":"2010","journal-title":"Commun. ACM"},{"issue":"5","key":"10.1016\/j.jnca.2022.103520_b5","doi-asserted-by":"crossref","first-page":"2759","DOI":"10.1111\/itor.12724","article-title":"Optimal decision trees for the algorithm selection problem: integer programming based approaches","volume":"28","author":"Boas","year":"2021","journal-title":"Int. Trans. Oper. Res."},{"issue":"2","key":"10.1016\/j.jnca.2022.103520_b6","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1007\/s10951-018-0597-6","article-title":"The longest processing time rule for identical parallel machines revisited","volume":"23","author":"Croce","year":"2020","journal-title":"J. Sched."},{"key":"10.1016\/j.jnca.2022.103520_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115225","article-title":"AutomaticaI - A hybrid approach for automatic artificial intelligence algorithm selection and hyperparameter tuning","volume":"182","author":"Czako","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.jnca.2022.103520_b8","series-title":"2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021","first-page":"61","article-title":"R-CASS: using algorithm selection for self-adaptive service oriented systems","author":"Deshpande","year":"2021"},{"key":"10.1016\/j.jnca.2022.103520_b9","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.future.2020.02.018","article-title":"Q-learning based dynamic task scheduling for energy-efficient cloud computing","volume":"108","author":"Ding","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"issue":"11","key":"10.1016\/j.jnca.2022.103520_b10","doi-asserted-by":"crossref","DOI":"10.1002\/cpe.5654","article-title":"Task scheduling based on deep reinforcement learning in a cloud manufacturing environment","volume":"32","author":"Dong","year":"2020","journal-title":"Concurr. Comput. Pract. Exp."},{"issue":"5","key":"10.1016\/j.jnca.2022.103520_b11","first-page":"94:1","article-title":"Machine learning methods for reliable resource provisioning in edge-cloud computing: A survey","volume":"52","author":"Duc","year":"2019","journal-title":"ACM Comput. Surv."},{"issue":"4","key":"10.1016\/j.jnca.2022.103520_b12","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1109\/TCC.2015.2424892","article-title":"Performance and energy efficiency metrics for communication systems of cloud computing data centers","volume":"5","author":"Fiandrino","year":"2017","journal-title":"IEEE Trans. Cloud Comput."},{"key":"10.1016\/j.jnca.2022.103520_b13","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.jpdc.2018.05.008","article-title":"Scheduling parallel identical machines to minimize makespan: A parallel approximation algorithm","volume":"133","author":"Ghalami","year":"2019","journal-title":"J. Parallel Distrib. Comput."},{"issue":"4","key":"10.1016\/j.jnca.2022.103520_b14","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1109\/TCC.2015.2440257","article-title":"The value of cooperation: Minimizing user costs in multi-broker mobile cloud computing networks","volume":"5","author":"Guan","year":"2017","journal-title":"IEEE Trans. Cloud Comput."},{"key":"10.1016\/j.jnca.2022.103520_b15","series-title":"Euro-Par 2018: Parallel Processing - 24th International Conference on Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings","first-page":"378","article-title":"Combinatorial auction algorithm selection for cloud resource allocation using machine learning","volume":"vol. 11014","author":"Gudu","year":"2018"},{"issue":"5","key":"10.1016\/j.jnca.2022.103520_b16","doi-asserted-by":"crossref","first-page":"3576","DOI":"10.1109\/JIOT.2020.3025015","article-title":"Cloud resource scheduling with deep reinforcement learning and imitation learning","volume":"8","author":"Guo","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"12","key":"10.1016\/j.jnca.2022.103520_b17","doi-asserted-by":"crossref","first-page":"2759","DOI":"10.1109\/TPDS.2019.2926979","article-title":"Multi-hop cooperative computation offloading for industrial IoT-edge-cloud computing environments","volume":"30","author":"Hong","year":"2019","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.jnca.2022.103520_b18","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.jnca.2018.03.028","article-title":"Multi-objective scheduling for scientific workflow in multicloud environment","volume":"114","author":"Hu","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2022.103520_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115948","article-title":"Improving the state-of-the-art in the traveling salesman problem: An anytime automatic algorithm selection","volume":"187","author":"Huerta","year":"2022","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.jnca.2022.103520_b20","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1007\/s10586-020-03145-8","article-title":"DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific workflow scheduling in cloud computing","volume":"24","author":"Iranmanesh","year":"2021","journal-title":"Clust. Comput."},{"key":"10.1016\/j.jnca.2022.103520_b21","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.future.2019.08.012","article-title":"Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing","volume":"102","author":"Ismayilov","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"issue":"3","key":"10.1016\/j.jnca.2022.103520_b22","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1109\/TPDS.2020.3025914","article-title":"ADRL: a hybrid anomaly-aware deep reinforcement learning-based resource scaling in clouds","volume":"32","author":"Kardani-Moghaddam","year":"2021","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"19","key":"10.1016\/j.jnca.2022.103520_b23","doi-asserted-by":"crossref","first-page":"14933","DOI":"10.1007\/s00500-020-04846-3","article-title":"An efficient green computing fair resource allocation in cloud computing using modified deep reinforcement learning algorithm","volume":"24","author":"Karthiban","year":"2020","journal-title":"Soft Comput."},{"key":"10.1016\/j.jnca.2022.103520_b24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jnca.2019.06.006","article-title":"A comprehensive survey for scheduling techniques in cloud computing","volume":"143","author":"Kumar","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2022.103520_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2019.101850","article-title":"Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment","volume":"61","author":"Laili","year":"2020","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"10.1016\/j.jnca.2022.103520_b26","series-title":"2009 Third International Conference on Multimedia and Ubiquitous Engineering, MUE 2009, Qingdao, China, June 4-6, 2009","first-page":"295","article-title":"An optimistic differentiated service job scheduling system for cloud computing service users and providers","author":"Li","year":"2009"},{"key":"10.1016\/j.jnca.2022.103520_b27","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.future.2019.12.040","article-title":"Resource optimization scheduling and allocation for hierarchical distributed cloud service system in smart city","volume":"107","author":"Li","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"issue":"10","key":"10.1016\/j.jnca.2022.103520_b28","doi-asserted-by":"crossref","first-page":"9399","DOI":"10.1109\/JIOT.2020.3007869","article-title":"Resource optimization for delay-tolerant data in blockchain-enabled IoT with edge computing: A deep reinforcement learning approach","volume":"7","author":"Li","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"11","key":"10.1016\/j.jnca.2022.103520_b29","doi-asserted-by":"crossref","first-page":"7064","DOI":"10.1109\/TWC.2020.3007805","article-title":"Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks","volume":"19","author":"Liu","year":"2020","journal-title":"IEEE Trans. Wirel. Commun."},{"issue":"1","key":"10.1016\/j.jnca.2022.103520_b30","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1109\/TEVC.2016.2623803","article-title":"An energy efficient ant colony system for virtual machine placement in cloud computing","volume":"22","author":"Liu","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.jnca.2022.103520_b31","series-title":"2017 IEEE International Conference on Big Data (IEEE BigData 2017), Boston, MA, USA, December 11-14, 2017","first-page":"203","article-title":"Elastic management of cloud applications using adaptive reinforcement learning","author":"Lolos","year":"2017"},{"key":"10.1016\/j.jnca.2022.103520_b32","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1016\/j.future.2019.07.019","article-title":"Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning","volume":"102","author":"Lu","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"issue":"10","key":"10.1016\/j.jnca.2022.103520_b33","article-title":"Combined particle swarm optimization and ant colony system for energy efficient cloud data centers","volume":"33","author":"Mahil","year":"2021","journal-title":"Concurr. Comput. Pract. Exp."},{"key":"10.1016\/j.jnca.2022.103520_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114495","article-title":"An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance","volume":"169","author":"Mao","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.jnca.2022.103520_b35","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1016\/j.future.2019.09.035","article-title":"Intelligent task prediction and computation offloading based on mobile-edge cloud computing","volume":"102","author":"Miao","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"issue":"1","key":"10.1016\/j.jnca.2022.103520_b36","doi-asserted-by":"crossref","first-page":"19","DOI":"10.3390\/a14010019","article-title":"Sampling effects on algorithm selection for continuous black-box optimization","volume":"14","author":"Mu\u00f1oz","year":"2021","journal-title":"Algorithms"},{"issue":"1","key":"10.1016\/j.jnca.2022.103520_b37","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1109\/TWC.2019.2944165","article-title":"Joint data compression and computation offloading in hierarchical fog-cloud systems","volume":"19","author":"Nguyen","year":"2020","journal-title":"IEEE Trans. Wirel. Commun."},{"key":"10.1016\/j.jnca.2022.103520_b38","doi-asserted-by":"crossref","first-page":"878","DOI":"10.1016\/j.procs.2016.05.278","article-title":"Modified round robin algorithm for resource allocation in cloud computing","volume":"85","author":"Pradhan","year":"2016","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.jnca.2022.103520_b39","series-title":"Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, the Netherlands, September 5-9, 2020, Proceedings, Part I","first-page":"48","article-title":"Deep learning as a competitive feature-free approach for automated algorithm selection on the traveling salesperson problem","volume":"vol. 12269","author":"Seiler","year":"2020"},{"issue":"2","key":"10.1016\/j.jnca.2022.103520_b40","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1007\/s10922-017-9425-0","article-title":"Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II","volume":"26","author":"Sofia","year":"2018","journal-title":"J. Netw. Syst. Manage."},{"key":"10.1016\/j.jnca.2022.103520_b41","first-page":"139","article-title":"Energy efficient VM scheduling and routing in multi-tenant cloud data center","volume":"22","author":"Sudarshan\u00a0Chakravarthy","year":"2019","journal-title":"Sustain. Comput.: Inform. Syst."},{"key":"10.1016\/j.jnca.2022.103520_b42","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.jnca.2018.03.033","article-title":"On minimizing total energy consumption in the scheduling of virtual machine reservations","volume":"113","author":"Tian","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2022.103520_b43","doi-asserted-by":"crossref","first-page":"1170","DOI":"10.1016\/j.ins.2019.10.035","article-title":"A scheduling scheme in the cloud computing environment using deep q-learning","volume":"512","author":"Tong","year":"2020","journal-title":"Inform. Sci."},{"issue":"7","key":"10.1016\/j.jnca.2022.103520_b44","doi-asserted-by":"crossref","first-page":"1518","DOI":"10.1109\/TPDS.2020.2968913","article-title":"Modeling analysis and cost-performance ratio optimization of virtual machine scheduling in cloud computing","volume":"31","author":"Wan","year":"2020","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.jnca.2022.103520_b45","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/j.future.2018.10.046","article-title":"Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT","volume":"93","author":"Zhou","year":"2019","journal-title":"Future Gener. Comput. Syst."}],"container-title":["Journal of Network and Computer Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1084804522001618?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1084804522001618?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T20:21:00Z","timestamp":1679948460000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1084804522001618"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":45,"alternative-id":["S1084804522001618"],"URL":"https:\/\/doi.org\/10.1016\/j.jnca.2022.103520","relation":{},"ISSN":["1084-8045"],"issn-type":[{"type":"print","value":"1084-8045"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep reinforcement learning-based algorithms selectors for the resource scheduling in hierarchical Cloud computing","name":"articletitle","label":"Article Title"},{"value":"Journal of Network and Computer Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jnca.2022.103520","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103520"}}