{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T12:04:06Z","timestamp":1742385846397,"version":"3.37.3"},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"National Science and Technology Major Project of the Ministry of Science and Technology of China","award":["2017ZX03001019-003"]},{"DOI":"10.13039\/501100012166","name":"National Key R&D Plan","doi-asserted-by":"publisher","award":["Y7X0071105"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Science and Technology Service Network Initiative (STS) Project of Chinese Academy of Science","award":["2017YFB0801801"]},{"name":"Henan Association for Science and Technology","award":["2020HYTP008"]},{"name":"Key Scientific and Technological Project of Henan Province","award":["202102210352"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Network and Computer Applications"],"published-print":{"date-parts":[[2020,9]]},"DOI":"10.1016\/j.jnca.2020.102711","type":"journal-article","created":{"date-parts":[[2020,5,21]],"date-time":"2020-05-21T15:58:34Z","timestamp":1590076714000},"page":"102711","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"special_numbering":"C","title":["Encrypted traffic classification based on Gaussian mixture models and Hidden Markov Models"],"prefix":"10.1016","volume":"166","author":[{"given":"Zhongjiang","family":"Yao","sequence":"first","affiliation":[]},{"given":"Jingguo","family":"Ge","sequence":"additional","affiliation":[]},{"given":"Yulei","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Xiaosheng","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Runkang","family":"He","sequence":"additional","affiliation":[]},{"given":"Yuxiang","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jnca.2020.102711_bib1","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.jnca.2017.11.007","article-title":"Multi-classification approaches for classifying mobile app traffic","volume":"103","author":"Aceto","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2020.102711_bib2","doi-asserted-by":"crossref","first-page":"106944","DOI":"10.1016\/j.comnet.2019.106944","article-title":"Mimetic: mobile encrypted traffic classification using multimodal deep learning","volume":"165","author":"Aceto","year":"2019","journal-title":"Comput. Network."},{"issue":"1","key":"10.1016\/j.jnca.2020.102711_bib3","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1109\/TNN.2006.883010","article-title":"Bayesian neural networks for internet traffic classification","volume":"18","author":"Auld","year":"2007","journal-title":"IEEE Trans. Neural Network."},{"issue":"11","key":"10.1016\/j.jnca.2020.102711_bib4","doi-asserted-by":"crossref","first-page":"2916","DOI":"10.1109\/TIFS.2019.2911156","article-title":"Hedge: efficient traffic classification of encrypted and compressed packets","volume":"14","author":"Casino","year":"2019","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.jnca.2020.102711_bib5","series-title":"2016 IEEE 24th International Conference on Network Protocols (ICNP)","first-page":"1","article-title":"Predicting future traffic using hidden markov models","author":"Chen","year":"2016"},{"key":"10.1016\/j.jnca.2020.102711_bib6","series-title":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","first-page":"1","article-title":"Classification of network traffic via packet-level hidden markov models","author":"Dainotti","year":"2008"},{"issue":"1","key":"10.1016\/j.jnca.2020.102711_bib7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the em algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. Roy. Stat. Soc. Ser. b-Methodol."},{"year":"2018","series-title":"February 2018 Zscaler Ssl Threat Report","author":"Desai","key":"10.1016\/j.jnca.2020.102711_bib8"},{"key":"10.1016\/j.jnca.2020.102711_bib9","article-title":"Tor: the second-generation onion router","volume":"vol. 13","author":"Dingledine","year":"2004"},{"key":"10.1016\/j.jnca.2020.102711_bib10","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.jnca.2019.01.007","article-title":"Flow online identification method for the encrypted skype","volume":"132","author":"Dong","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2020.102711_bib11","first-page":"97","volume":"vol. 627","author":"Fan","year":"2001"},{"key":"10.1016\/j.jnca.2020.102711_bib12","series-title":"Proceedings of the 6th International Wireless Communications and Mobile Computing Conference, IWCMC10","first-page":"848","article-title":"Towards efficient protocol design through protocol profiling and verification of performance and operational metrics","author":"Georgoulas","year":"2010"},{"key":"10.1016\/j.jnca.2020.102711_bib13","article-title":"Time series anomaly detection for trustworthy services in cloud computing systems","author":"Huang","year":"2017","journal-title":"IEEE Trans. Big Data"},{"key":"10.1016\/j.jnca.2020.102711_bib14","first-page":"1532","article-title":"Is p2p dying or just hiding? [p2p traffic measurement]","volume":"vol. 3","author":"Karagiannis","year":"2004"},{"issue":"4","key":"10.1016\/j.jnca.2020.102711_bib15","first-page":"229","article-title":"Blinc: multilevel traffic classification in the dark","volume":"35","author":"Karagiannis","year":"2005","journal-title":"ACM Spec. Interest Group Data Communication"},{"key":"10.1016\/j.jnca.2020.102711_bib16","series-title":"IEEE INFOCOM 2014 - IEEE Conference on Computer Communications","first-page":"781","article-title":"Markov chain fingerprinting to classify encrypted traffic","author":"Korczynski","year":"2014"},{"issue":"1","key":"10.1016\/j.jnca.2020.102711_bib17","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1109\/TNET.2016.2562259","article-title":"Radio frequency traffic classification over wlan","volume":"25","author":"Kornycky","year":"2017","journal-title":"IEEE\/ACM Trans. Netw."},{"key":"10.1016\/j.jnca.2020.102711_bib18","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.jnca.2018.10.018","article-title":"Mobile app traffic flow feature extraction and selection for improving classification robustness","volume":"125","author":"Liu","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2020.102711_bib19","series-title":"IEEE INFOCOM 2019 - IEEE Conference on Computer Communications","first-page":"1171","article-title":"Fs-net: a flow sequence network for encrypted traffic classification","author":"Liu","year":"2019"},{"key":"10.1016\/j.jnca.2020.102711_bib20","series-title":"2017 IEEE Trustcom\/BigDataSE\/ICESS","first-page":"50","article-title":"Wenc: Https encrypted traffic classification using weighted ensemble learning and Markov chain","author":"Pan","year":"2017"},{"year":"2016","series-title":"The Trouble with Tor","author":"Prince","key":"10.1016\/j.jnca.2020.102711_bib21"},{"key":"10.1016\/j.jnca.2020.102711_bib22","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.jnca.2019.01.016","article-title":"An approach for sdn traffic monitoring based on big data techniques","volume":"131","author":"Queiroz","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"author":"Rezaei","key":"10.1016\/j.jnca.2020.102711_bib23"},{"key":"10.1016\/j.jnca.2020.102711_bib24","series-title":"Proceedings of the 4th International Conference on Information Systems Security and Privacy","first-page":"108","article-title":"Toward generating a new intrusion detection dataset and intrusion traffic characterization","author":"Sharafaldin","year":"2018"},{"key":"10.1016\/j.jnca.2020.102711_bib25","doi-asserted-by":"crossref","first-page":"102538","DOI":"10.1016\/j.jnca.2020.102538","article-title":"The rise of traffic classification in iot networks: a survey","volume":"154","author":"Tahaei","year":"2020","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2020.102711_bib26","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.jnca.2019.06.004","article-title":"Recognizing the content types of network traffic based on a hybrid dnn-hmm model","volume":"142","author":"Tan","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.jnca.2020.102711_bib27","series-title":"Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security","first-page":"57","article-title":"Seeing through network-protocol obfuscation","author":"Wang","year":"2015"},{"key":"10.1016\/j.jnca.2020.102711_bib28","doi-asserted-by":"crossref","first-page":"54024","DOI":"10.1109\/ACCESS.2019.2912896","article-title":"A survey of techniques for mobile service encrypted traffic classification using deep learning","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jnca.2020.102711_bib29","series-title":"Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security","first-page":"9","article-title":"Hmm profiles for network traffic classification","author":"Wright","year":"2004"},{"key":"10.1016\/j.jnca.2020.102711_bib30","series-title":"2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC\/SmartCity\/DSS)","first-page":"335","article-title":"Meek-based tor traffic identification with hidden markov model","author":"Yao","year":"2018"},{"key":"10.1016\/j.jnca.2020.102711_bib31","series-title":"2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC\/SmartCity\/DSS)","first-page":"329","article-title":"Encrypted traffic classification with a convolutional long short-term memory neural network","author":"Zou","year":"2018"}],"container-title":["Journal of Network and Computer Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1084804520301855?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1084804520301855?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T05:09:02Z","timestamp":1722920942000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1084804520301855"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9]]},"references-count":31,"alternative-id":["S1084804520301855"],"URL":"https:\/\/doi.org\/10.1016\/j.jnca.2020.102711","relation":{},"ISSN":["1084-8045"],"issn-type":[{"type":"print","value":"1084-8045"}],"subject":[],"published":{"date-parts":[[2020,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Encrypted traffic classification based on Gaussian mixture models and Hidden Markov Models","name":"articletitle","label":"Article Title"},{"value":"Journal of Network and Computer Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jnca.2020.102711","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102711"}}