{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T11:11:37Z","timestamp":1723029097985},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,27]],"date-time":"2023-12-27T00:00:00Z","timestamp":1703635200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Information Security and Applications"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.jisa.2023.103691","type":"journal-article","created":{"date-parts":[[2024,1,2]],"date-time":"2024-01-02T10:46:32Z","timestamp":1704192392000},"page":"103691","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Enhancing android malware detection explainability through function call graph APIs"],"prefix":"10.1016","volume":"80","author":[{"ORCID":"http:\/\/orcid.org\/0009-0009-0092-9067","authenticated-orcid":false,"given":"Diego","family":"Soi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0610-7736","authenticated-orcid":false,"given":"Alessandro","family":"Sanna","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2640-4663","authenticated-orcid":false,"given":"Davide","family":"Maiorca","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5759-3017","authenticated-orcid":false,"given":"Giorgio","family":"Giacinto","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jisa.2023.103691_b1","series-title":"Mobile operating system market share worldwide","author":"StatCounter-GlobalStats","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b2","series-title":"Total amount of malware and PUA under android","author":"AV-ATLAS","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b3","series-title":"Android mobile security threats","author":"Kaspersky","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b4","series-title":"2019 24th international conference on engineering of complex computer systems","first-page":"61","article-title":"MobiDroid: A performance-sensitive malware detection system on mobile platform","author":"Feng","year":"2019"},{"key":"10.1016\/j.jisa.2023.103691_b5","first-page":"29","article-title":"Using convolutional neural network for android malware detection","volume":"23","author":"Karabey Aksakalli","year":"2019","journal-title":"Comput Model New Technol"},{"key":"10.1016\/j.jisa.2023.103691_b6","series-title":"An android malware detection method based on CNN mixed-data model","author":"Nicheporuk","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b7","article-title":"A deep learning method for android application classification using semantic features","volume":"2022","author":"Wang","year":"2022","journal-title":"Secur Commun Netw","ISSN":"http:\/\/id.crossref.org\/issn\/1939-0114","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b8","doi-asserted-by":"crossref","first-page":"1277","DOI":"10.3233\/JIFS-169424","article-title":"Detecting android malware using long short-term memory (LSTM)","volume":"34","author":"Ravi","year":"2018","journal-title":"J Intell Fuzzy Systems"},{"key":"10.1016\/j.jisa.2023.103691_b9","series-title":"R-PackDroid: Practical on-device detection of android ransomware, CoRR abs\/1805.09563","author":"Scalas","year":"2018"},{"key":"10.1016\/j.jisa.2023.103691_b10","series-title":"2020 IEEE international conference on big data and smart computing","first-page":"75","article-title":"Enhanced android malware detection: An SVM-based machine learning approach","author":"Han","year":"2020"},{"issue":"4","key":"10.1016\/j.jisa.2023.103691_b11","doi-asserted-by":"crossref","DOI":"10.3390\/sym14040718","article-title":"Permissions-based detection of android malware using machine learning","volume":"14","author":"Akbar","year":"2022","journal-title":"Symmetry","ISSN":"http:\/\/id.crossref.org\/issn\/2073-8994","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b12","series-title":"2020 IEEE conference on communications and network security","first-page":"1","article-title":"Hybrid analysis of android apps for security vetting using deep learning","author":"Chaulagain","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b13","series-title":"2017 international conference on advances in computing, communications and informatics","first-page":"1677","article-title":"Deep android malware detection and classification","author":"Vinayakumar","year":"2017"},{"key":"10.1016\/j.jisa.2023.103691_b14","series-title":"Graph neural network-based android malware classification with jumping knowledge, CoRR abs\/2201.07537","author":"Lo","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b15","article-title":"Android malware detection via graph representation learning","volume":"2021","author":"Pengbin Feng","year":"2021","journal-title":"Mob Inf Syst","ISSN":"http:\/\/id.crossref.org\/issn\/1574-017X","issn-type":"print"},{"issue":"3","key":"10.1016\/j.jisa.2023.103691_b16","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1109\/TIFS.2018.2866319","article-title":"A multimodal deep learning method for android malware detection using various features","volume":"14","author":"Kim","year":"2019","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"10.1016\/j.jisa.2023.103691_b17","series-title":"Symposium on network and distributed system security","article-title":"DREBIN: Effective and explainable detection of android malware in your pocket","author":"Arp","year":"2014"},{"key":"10.1016\/j.jisa.2023.103691_b18","series-title":"Explainable deep learning AI","isbn-type":"print","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/B978-0-32-396098-4.00017-X","article-title":"Chapter 11 - Improving malware detection with explainable machine learning","author":"Scalas","year":"2023","ISBN":"http:\/\/id.crossref.org\/isbn\/9780323960984"},{"key":"10.1016\/j.jisa.2023.103691_b19","series-title":"Explaining black-box android malware detection, CoRR abs\/1803.03544","author":"Melis","year":"2018"},{"key":"10.1016\/j.jisa.2023.103691_b20","series-title":"Do gradient-based explanations tell anything about adversarial robustness to android malware? CoRR abs\/2005.01452","author":"Melis","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b21","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1016\/j.procs.2021.03.118","article-title":"Towards explainable CNNs for android malware detection","volume":"184","author":"Kinkead","year":"2021","journal-title":"Procedia Comput Sci","ISSN":"http:\/\/id.crossref.org\/issn\/1877-0509","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.cose.2021.102198","article-title":"Towards an interpretable deep learning model for mobile malware detection and family identification","volume":"105","author":"Iadarola","year":"2021","journal-title":"Comput Secur","ISSN":"http:\/\/id.crossref.org\/issn\/0167-4048","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b23","series-title":"Why an android app is classified as malware? Towards malware classification interpretation, CoRR abs\/2004.11516","author":"Wu","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b24","series-title":"A comprehensive survey on applications of transformers for deep learning tasks","author":"Islam","year":"2023"},{"issue":"18","key":"10.1016\/j.jisa.2023.103691_b25","doi-asserted-by":"crossref","DOI":"10.3390\/s22186766","article-title":"Explainable malware detection system using transformers-based transfer learning and multi-model visual representation","volume":"22","author":"Ullah","year":"2022","journal-title":"Sensors","ISSN":"http:\/\/id.crossref.org\/issn\/1424-8220","issn-type":"print"},{"issue":"11","key":"10.1016\/j.jisa.2023.103691_b26","doi-asserted-by":"crossref","DOI":"10.3390\/app13116839","article-title":"A malware detection and extraction method for the related information using the ViT attention mechanism on android operating system","volume":"13","author":"Jo","year":"2023","journal-title":"Appl Sci","ISSN":"http:\/\/id.crossref.org\/issn\/2076-3417","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b27","series-title":"Smallerapk, part 1: Anatomy of an apk, medium - Android Developers","author":"Kalici\u0144ski","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b28","series-title":"App components: Entry points for Android applications","author":"Alvares","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b29","series-title":"Machine learning explainability vs interpretability: Two concepts that could help restore trust in AI","author":"Gall","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b30","series-title":"Explainable deep learning: A field guide for the uninitiated, CoRR abs\/2004.14545","author":"Xie","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b31","series-title":"A unified approach to interpreting model predictions, CoRR abs\/1705.07874","author":"Lundberg","year":"2017"},{"key":"10.1016\/j.jisa.2023.103691_b32","article-title":"Android malware detection via graph representation learning","volume":"2021\/5538841","author":"Raul","year":"2021","journal-title":"Mob Inf Syst"},{"issue":"2","key":"10.1016\/j.jisa.2023.103691_b33","doi-asserted-by":"crossref","DOI":"10.3390\/electronics10020186","article-title":"Android malware detection based on structural features of the function call graph","volume":"10","author":"Yang","year":"2021","journal-title":"Electronics","ISSN":"http:\/\/id.crossref.org\/issn\/2079-9292","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b34","unstructured":"Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. In: Proceedings of workshop at ICLR, vol. 2013. 2013."},{"key":"10.1016\/j.jisa.2023.103691_b35","series-title":"Convolutional neural networks for sentence classification, CoRR abs\/1408.5882","author":"Kim","year":"2014"},{"key":"10.1016\/j.jisa.2023.103691_b36","series-title":"2020 seventh international conference on social networks analysis, management and security","first-page":"1","article-title":"Sentiment analysis using Word2vec-CNN-BiLSTM classification","author":"Yue","year":"2020"},{"key":"10.1016\/j.jisa.2023.103691_b37","series-title":"2022 18th international conference on wireless and mobile computing, networking and communications","first-page":"112","article-title":"A surrogate-based technique for android malware detectors\u2019 explainability","author":"Morcos","year":"2022"},{"key":"10.1016\/j.jisa.2023.103691_b38","doi-asserted-by":"crossref","first-page":"73214","DOI":"10.1109\/ACCESS.2022.3189645","article-title":"PAIRED: An explainable lightweight android malware detection system","volume":"10","author":"Alani","year":"2022","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.jisa.2023.103691_b39","doi-asserted-by":"crossref","DOI":"10.3390\/info14010002","article-title":"A closer look at machine learning effectiveness in android malware detection","volume":"14","author":"Giannakas","year":"2023","journal-title":"Information","ISSN":"http:\/\/id.crossref.org\/issn\/2078-2489","issn-type":"print"},{"key":"10.1016\/j.jisa.2023.103691_b40","series-title":"Annual computer security applications conference","isbn-type":"print","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1145\/3427228.3427261","article-title":"AVclass2: Massive malware tag extraction from AV labels","author":"Sebasti\u00e1n","year":"2020","ISBN":"http:\/\/id.crossref.org\/isbn\/9781450388580"},{"key":"10.1016\/j.jisa.2023.103691_b41","series-title":"28th USENIX security symposium","isbn-type":"print","first-page":"729","article-title":"TESSERACT: Eliminating experimental bias in malware classification across space and time","author":"Pendlebury","year":"2019","ISBN":"http:\/\/id.crossref.org\/isbn\/9781939133069"},{"key":"10.1016\/j.jisa.2023.103691_b42","series-title":"2022 IEEE 33rd international symposium on software reliability engineering","article-title":"Explainable AI for android malware detection: Towards understanding why the models perform so well?","author":"Liu","year":"2022"}],"container-title":["Journal of Information Security and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2214212623002752?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2214212623002752?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,27]],"date-time":"2024-02-27T22:57:43Z","timestamp":1709074663000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2214212623002752"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":42,"alternative-id":["S2214212623002752"],"URL":"https:\/\/doi.org\/10.1016\/j.jisa.2023.103691","relation":{},"ISSN":["2214-2126"],"issn-type":[{"value":"2214-2126","type":"print"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Enhancing android malware detection explainability through function call graph APIs","name":"articletitle","label":"Article Title"},{"value":"Journal of Information Security and Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jisa.2023.103691","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"103691"}}