{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T06:37:17Z","timestamp":1723531037250},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012131","name":"Department of Science and Technology of Liaoning Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012131","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Information Security and Applications"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.jisa.2023.103690","type":"journal-article","created":{"date-parts":[[2023,12,26]],"date-time":"2023-12-26T10:34:00Z","timestamp":1703586840000},"page":"103690","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["SeMalBERT: Semantic-based malware detection with bidirectional encoder representations from transformers"],"prefix":"10.1016","volume":"80","author":[{"given":"Junming","family":"Liu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2627-8276","authenticated-orcid":false,"given":"Yuntao","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Yongxin","family":"Feng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0000-7023-9437","authenticated-orcid":false,"given":"Yutao","family":"Hu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-9936-5694","authenticated-orcid":false,"given":"Xiangyu","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jisa.2023.103690_bib0001","doi-asserted-by":"crossref","first-page":"703","DOI":"10.4028\/p-052h79","article-title":"Enhanced malware detection using deep learning with image processing techniques","volume":"124","author":"Benny King","year":"2023","journal-title":"Adv Sci Technol"},{"issue":"3","key":"10.1016\/j.jisa.2023.103690_bib0002","article-title":"A malware detection approach based on deep learning and memory forensics","volume":"15","author":"Shuhui","year":"2023","journal-title":"Symmetry"},{"key":"10.1016\/j.jisa.2023.103690_bib0003","unstructured":"Atlas VPN https:\/\/account.atlasvpn.com\/ 2023."},{"key":"10.1016\/j.jisa.2023.103690_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.cose.2021.102449","article-title":"A multi-perspective malware detection approach through behavioral fusion of api call sequence","volume":"110","author":"Amer","year":"2021","journal-title":"Comput Secur"},{"issue":"3","key":"10.1016\/j.jisa.2023.103690_bib0005","doi-asserted-by":"crossref","DOI":"10.32604\/iasc.2023.034907","article-title":"Graph convolutional neural network based malware detection in IoT-cloud environment","volume":"36","author":"Alsubaei","year":"2023","journal-title":"Intell Autom Soft Comput"},{"issue":"2","key":"10.1016\/j.jisa.2023.103690_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2089125.2089126","article-title":"A survey on automated dynamic malware-analysis techniques and tools","volume":"44","author":"Egele","year":"2008","journal-title":"ACM Comput Surv"},{"key":"10.1016\/j.jisa.2023.103690_bib0007","series-title":"Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC)","first-page":"3226","article-title":"MalBERT: malware detection using bidirectional encoder representations from transformers","author":"Rahali","year":"2021"},{"key":"10.1016\/j.jisa.2023.103690_bib0008","unstructured":"Catak FO, Yaz\u0131 AF. A benchmark API call dataset for windows PE malware classification. arXiv preprint arXiv:1905.01999, 2019."},{"key":"10.1016\/j.jisa.2023.103690_bib0009","unstructured":"Tay Yi, Dehghani M, Bahri D, Metzler D. Efficient transformers: a survey. arXiv preprint arXiv:2009.06732, 2020."},{"key":"10.1016\/j.jisa.2023.103690_bib0010","series-title":"Proceedings of the IEEE\/ACM 39th international conference on software engineering (ICSE)","first-page":"438","article-title":"Exploring API embedding for API usages and applications","author":"Nguyen","year":"2017"},{"key":"10.1016\/j.jisa.2023.103690_bib0011","unstructured":"Devlin J, Chang MW, Lee K, et\u00a0al. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018."},{"key":"10.1016\/j.jisa.2023.103690_bib0012","first-page":"28","article-title":"Convolutional LSTM network: a machine learning approach for precipitation nowcasting","author":"Shi","year":"2015","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.jisa.2023.103690_bib0013","series-title":"Proceedings of the 21st Asia pacific symposium on intelligent and evolutionary systems (IES)","first-page":"101","article-title":"NLP-based approaches for malware classification from API sequences","author":"Tran","year":"2017"},{"issue":"1","key":"10.1016\/j.jisa.2023.103690_bib0014","article-title":"Malware detection based on TF-(IDF&ICF) method","volume":"2024","author":"Qin","year":"2021","journal-title":"J Phys Conf Ser IOP Publ"},{"key":"10.1016\/j.jisa.2023.103690_bib0015","first-page":"128","article-title":"BHMDC: a byte and hex n-gram based malware detection and classification method","author":"Yonghe","year":"2023","journal-title":"Comput Secur."},{"key":"10.1016\/j.jisa.2023.103690_bib0016","series-title":"Proceedings of the S international conference on computer science, engineering and applications (ICCSEA)","first-page":"1","article-title":"Windows malware detection using machine learning and TF-IDF enriched API calls information","author":"Sharma","year":"2022"},{"issue":"1","key":"10.1016\/j.jisa.2023.103690_bib0017","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.eij.2022.12.002","article-title":"Detection of malware in downloaded files using various machine learning models","volume":"24","author":"Kamboj","year":"2023","journal-title":"Egypt Inform J"},{"issue":"13","key":"10.1016\/j.jisa.2023.103690_bib0018","doi-asserted-by":"crossref","first-page":"3645","DOI":"10.3390\/s20133645","article-title":"OpCode-level function call graph based android malware classification using deep learning","volume":"20","author":"Niu","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.jisa.2023.103690_bib0019","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.future.2021.06.029","article-title":"MCFT-CNN: malware classification with fine-tune convolution neural networks using traditional and transfer learning in internet of things","volume":"125","author":"Kumar","year":"2021","journal-title":"Futur Gener Comput Syst"},{"key":"10.1016\/j.jisa.2023.103690_bib0020","series-title":"Proceedings of the AI 2016: advances in artificial intelligence: 29th Australasian joint conference","first-page":"137","article-title":"Deep learning for classification of malware system call sequences","author":"Kolosnjaji","year":"2016"},{"key":"10.1016\/j.jisa.2023.103690_bib0021","series-title":"Proceedings of the ICMLCA 2021; 2nd international conference on machine learning and computer application. VDE","first-page":"1","article-title":"Research on intelligent detection method of malicious behavior based on self-attention","author":"He","year":"2021"},{"key":"10.1016\/j.jisa.2023.103690_bib0022","unstructured":"Rahali A, Akhloufi MA. MalBERT: using transformers for cybersecurity and malicious software detection. arXiv preprint arXiv:2103.03806, 2021."},{"key":"10.1016\/j.jisa.2023.103690_bib0023","first-page":"30","article-title":"Attention is all you need","author":"Vaswani","year":"2017","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.jisa.2023.103690_bib0024","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1007\/s00500-019-03940-5","article-title":"Deep learning for effective Android malware detection using API call graph embeddings","volume":"24","author":"Pekta\u015f","year":"2020","journal-title":"Soft Comput"},{"key":"10.1016\/j.jisa.2023.103690_bib0025","doi-asserted-by":"crossref","first-page":"151034","DOI":"10.1109\/ACCESS.2019.2948155","article-title":"A deep learning approach with deep contextualized word representations for chemical\u2013protein interaction extraction from biomedical literature","volume":"7","author":"Sun","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jisa.2023.103690_bib0026","unstructured":"Song K, Tan X, Qin T, et\u00a0al. Mass: masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450, 2019."},{"key":"10.1016\/j.jisa.2023.103690_bib0027","unstructured":"Benarab CE. GS CNN-Trans-Enc: a CNN-enhanced transformer-encoder on top of static BERT representations for document classification. arXiv preprint arXiv:2209.06344, 2022."},{"key":"10.1016\/j.jisa.2023.103690_bib0028","doi-asserted-by":"crossref","first-page":"182459","DOI":"10.1109\/ACCESS.2019.2960412","article-title":"IoMT malware detection approaches: analysis and research challenges","volume":"7","author":"Wazid","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jisa.2023.103690_bib0029","unstructured":"Anderson HS, Roth P. Ember: an open dataset for training static PE malware machine learning models. arXiv preprint arXiv:1804.04637, 2018."},{"key":"10.1016\/j.jisa.2023.103690_bib0030","series-title":"Proceedings of the 8th international conference on P2P","article-title":"Towards practical program execution over fully homomorphic encryption schemes","author":"Fau","year":"2013"},{"key":"10.1016\/j.jisa.2023.103690_bib0031","series-title":"Proceedings of the international conference on information & communication technology for competitive strategies","article-title":"Malware analysis: tools and techniques","author":"Kunwar","year":"2016"}],"container-title":["Journal of Information Security and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2214212623002740?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2214212623002740?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,27]],"date-time":"2024-02-27T22:57:38Z","timestamp":1709074658000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2214212623002740"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":31,"alternative-id":["S2214212623002740"],"URL":"https:\/\/doi.org\/10.1016\/j.jisa.2023.103690","relation":{},"ISSN":["2214-2126"],"issn-type":[{"value":"2214-2126","type":"print"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SeMalBERT: Semantic-based malware detection with bidirectional encoder representations from transformers","name":"articletitle","label":"Article Title"},{"value":"Journal of Information Security and Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jisa.2023.103690","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103690"}}