{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T06:32:37Z","timestamp":1723789957931},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Information Security and Applications"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.jisa.2020.102564","type":"journal-article","created":{"date-parts":[[2020,6,15]],"date-time":"2020-06-15T17:04:29Z","timestamp":1592240669000},"page":"102564","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Inter-dataset generalization strength of supervised machine learning methods for intrusion detection"],"prefix":"10.1016","volume":"54","author":[{"given":"Laurens","family":"D\u2019hooge","sequence":"first","affiliation":[]},{"given":"Tim","family":"Wauters","sequence":"additional","affiliation":[]},{"given":"Bruno","family":"Volckaert","sequence":"additional","affiliation":[]},{"given":"Filip","family":"De Turck","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jisa.2020.102564_bib0001","unstructured":"Attak H., Combalia M., Gardikis G., Gast\u00f3n B., Jacquin L., Litke A., et\u00a0al. Application of distributed computing and machine learning technologies to cybersecurity. Space 2:I2CAT."},{"key":"10.1016\/j.jisa.2020.102564_bib0002","series-title":"Tech. Rep.","article-title":"Intrusion detection systems: a survey and taxonomy","author":"Axelsson","year":"2000"},{"key":"10.1016\/j.jisa.2020.102564_bib0003","series-title":"Computational intelligence for security and defense applications, 2009. CISDA 2009. IEEE symposium on","first-page":"1","article-title":"Analysis of the 1999 darpa\/lincoln laboratory ids evaluation data with netadhict","author":"Brown","year":"2009"},{"issue":"2","key":"10.1016\/j.jisa.2020.102564_bib0004","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/COMST.2015.2494502","article-title":"A survey of data mining and machine learning methods for cyber security intrusion detection","volume":"18","author":"Buczak","year":"2016","journal-title":"IEEE Commun Surv Tutor"},{"key":"10.1016\/j.jisa.2020.102564_bib0005","article-title":"Xgboost: a scalable tree boosting system","volume":"abs\/1603.02754","author":"Chen","year":"2016","journal-title":"CoRR"},{"key":"10.1016\/j.jisa.2020.102564_bib0006","unstructured":"Cloudflare-blog. Inside the infamous mirai iot botnet: A retrospective analysis. URL https:\/\/blog.cloudflare.com\/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis\/."},{"key":"10.1016\/j.jisa.2020.102564_bib0007","series-title":"2013 IEEE wireless communications and networking conference (WCNC)","first-page":"4487","article-title":"Generation of a new ids test dataset: Time to retire the kdd collection","author":"Creech","year":"2013"},{"key":"10.1016\/j.jisa.2020.102564_bib0008","series-title":"2019 IEEE 19th international conference on software Quality, Reliability and Security Companion (QRS-C)","first-page":"471","article-title":"Ddos intrusion detection through machine learning ensemble","author":"Das","year":"2019"},{"key":"10.1016\/j.jisa.2020.102564_bib0009","series-title":"Advances in information and communication","isbn-type":"print","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1007\/978-3-030-39442-4_53","article-title":"A holistic approach for detecting ddos attacks by using ensemble unsupervised machine learning","author":"Das","year":"2020","ISBN":"http:\/\/id.crossref.org\/isbn\/9783030394424"},{"key":"10.1016\/j.jisa.2020.102564_bib0010","series-title":"Requirements and model for IDES-a real-time intrusion-detection expert system","author":"Denning","year":"1985"},{"key":"10.1016\/j.jisa.2020.102564_sbref0009","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jnca.2016.03.011","article-title":"Ensemble based collaborative and distributed intrusion detection systems: A survey","volume":"66","author":"Folino","year":"2016","journal-title":"J Netw Comput Appl"},{"key":"10.1016\/j.jisa.2020.102564_bib0012","doi-asserted-by":"crossref","first-page":"82512","DOI":"10.1109\/ACCESS.2019.2923640","article-title":"An adaptive ensemble machine learning model for intrusion detection","volume":"7","author":"Gao","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jisa.2020.102564_bib0013","series-title":"Proceedings of the 2006 Workshop on New Security Paradigms","isbn-type":"print","first-page":"21","article-title":"Challenging the anomaly detection paradigm: A provocative discussion","author":"Gates","year":"2007","ISBN":"http:\/\/id.crossref.org\/isbn\/9781595939234"},{"key":"10.1016\/j.jisa.2020.102564_bib0014","series-title":"International conference on security and privacy in new computing environments","first-page":"551","article-title":"Bl-ids: Detecting web attacks using bi-lstm model based on deep learning","author":"Hao","year":"2019"},{"key":"10.1016\/j.jisa.2020.102564_bib0015","series-title":"IFIP international conference on autonomous infrastructure, management and security","first-page":"86","article-title":"Sshcure: a flow-based ssh intrusion detection system","author":"Hellemons","year":"2012"},{"key":"10.1016\/j.jisa.2020.102564_bib0016","article-title":"Shallow and deep networks intrusion detection system: a taxonomy and survey","author":"Hodo","year":"2017","journal-title":"arXiv preprint arXiv:170102145"},{"key":"10.1016\/j.jisa.2020.102564_bib0017","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.comnet.2017.03.018","article-title":"Detecting http-based application layer dos attacks on web servers in the presence of sampling","volume":"121","author":"Jazi","year":"2017","journal-title":"Comput Netw"},{"key":"10.1016\/j.jisa.2020.102564_bib0018","series-title":"Fourth international congress on information and communication technology","first-page":"471","article-title":"Deep learning approach for IDS","author":"Liu","year":"2020"},{"key":"10.1016\/j.jisa.2020.102564_bib0019","series-title":"Proceedings of NATO STO SAS-139 Workshop, Portugal","article-title":"Network intrusion detection: half a kingdom for a good dataset","author":"Ma\u0142owidzki","year":"2015"},{"key":"10.1016\/j.jisa.2020.102564_bib0020","doi-asserted-by":"crossref","first-page":"59657","DOI":"10.1109\/ACCESS.2018.2875045","article-title":"Distributed abnormal behavior detection approach based on deep belief network and ensemble SVM using spark","volume":"6","author":"Marir","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.jisa.2020.102564_bib0021","series-title":"Recent advances in intrusion detection","isbn-type":"print","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1007\/3-540-39945-3_10","article-title":"The 1998 lincoln laboratory IDS evaluation","author":"McHugh","year":"2000","ISBN":"http:\/\/id.crossref.org\/isbn\/9783540399452"},{"key":"10.1016\/j.jisa.2020.102564_bib0022","series-title":"Proceedings of the 9th python in science conference","doi-asserted-by":"crossref","first-page":"51","DOI":"10.25080\/Majora-92bf1922-00a","article-title":"Data structures for statistical computing in python","author":"McKinney","year":"2010"},{"key":"10.1016\/j.jisa.2020.102564_bib0023","article-title":"Kitsune: an ensemble of autoencoders for online network intrusion detection","author":"Mirsky","year":"2018","journal-title":"arXiv preprint arXiv:180209089"},{"issue":"3","key":"10.1016\/j.jisa.2020.102564_bib0024","doi-asserted-by":"crossref","first-page":"4815","DOI":"10.1109\/JIOT.2018.2871719","article-title":"An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things","volume":"6","author":"Moustafa","year":"2018","journal-title":"IEEE Internet Things J"},{"key":"10.1016\/j.jisa.2020.102564_bib0025","doi-asserted-by":"crossref","first-page":"13546","DOI":"10.1109\/ACCESS.2019.2893871","article-title":"Introducing deep learning self-adaptive misuse network intrusion detection systems","volume":"7","author":"Papamartzivanos","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jisa.2020.102564_bib0026","first-page":"2825","article-title":"Scikit-learn: machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.jisa.2020.102564_bib0027","series-title":"2015 11th European Dependable Computing Conference (EDCC)","first-page":"49","article-title":"Automated evaluation of network intrusion detection systems in iaas clouds","author":"Probst","year":"2015"},{"key":"10.1016\/j.jisa.2020.102564_bib0028","series-title":"NDSS","article-title":"Using generalization and characterization techniques in the anomaly-based detection of web attacks","author":"Robertson","year":"2006"},{"key":"10.1016\/j.jisa.2020.102564_bib0029","series-title":"ICISSP","first-page":"108","article-title":"Toward generating a new intrusion detection dataset and intrusion traffic characterization.","author":"Sharafaldin","year":"2018"},{"issue":"3","key":"10.1016\/j.jisa.2020.102564_bib0030","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.cose.2011.12.012","article-title":"Toward developing a systematic approach to generate benchmark datasets for intrusion detection","volume":"31","author":"Shiravi","year":"2012","journal-title":"comput Secur"},{"key":"10.1016\/j.jisa.2020.102564_bib0031","series-title":"2010 IEEE Symposium on Security and Privacy","first-page":"305","article-title":"Outside the closed world: on using machine learning for network intrusion detection","author":"Sommer","year":"2010"},{"key":"10.1016\/j.jisa.2020.102564_bib0032","series-title":"Computational intelligence for security and defense applications, 2009. CISDA 2009. IEEE Symposium on","first-page":"1","article-title":"A detailed analysis of the kdd cup 99 data set","author":"Tavallaee","year":"2009"},{"key":"10.1016\/j.jisa.2020.102564_bib0033","series-title":"2018 IEEE 17th international symposium on network Computing and Applications (NCA)","first-page":"1","article-title":"An ensemble learning based Wi-Fi network intrusion detection system (wnids)","author":"Vaca","year":"2018"},{"key":"10.1016\/j.jisa.2020.102564_bib0034","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.comnet.2017.08.013","article-title":"Toward a reliable anomaly-based intrusion detection in real-world environments","volume":"127","author":"Viegas","year":"2017","journal-title":"Comput Netw"},{"key":"10.1016\/j.jisa.2020.102564_bib0035","series-title":"2019 IEEE 5th intl conference on big data security on cloud (BigDataSecurity), IEEE Intl Conference on high performance and smart computing,(HPSC) and IEEE Intl conference on intelligent data and security (IDS)","first-page":"300","article-title":"A novel intrusion detector based on deep learning hybrid methods","author":"Wang","year":"2019"},{"issue":"1","key":"10.1016\/j.jisa.2020.102564_bib0036","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2009.06.019","article-title":"The use of computational intelligence in intrusion detection systems: a review","volume":"10","author":"Wu","year":"2010","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.jisa.2020.102564_bib0037","doi-asserted-by":"crossref","first-page":"21954","DOI":"10.1109\/ACCESS.2017.2762418","article-title":"A deep learning approach for intrusion detection using recurrent neural networks","volume":"5","author":"Yin","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.jisa.2020.102564_bib0038","unstructured":"Zinkevich M.. Rules of machine learning: Best practices for ml engineering. URL https:\/\/developers.google.com\/machine-learning\/guides\/rules-of-ml\/."}],"container-title":["Journal of Information Security and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2214212619310415?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2214212619310415?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T23:11:04Z","timestamp":1619910664000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2214212619310415"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":38,"alternative-id":["S2214212619310415"],"URL":"https:\/\/doi.org\/10.1016\/j.jisa.2020.102564","relation":{},"ISSN":["2214-2126"],"issn-type":[{"value":"2214-2126","type":"print"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Inter-dataset generalization strength of supervised machine learning methods for intrusion detection","name":"articletitle","label":"Article Title"},{"value":"Journal of Information Security and Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jisa.2020.102564","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102564"}}