{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:57:53Z","timestamp":1732042673289},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Industrial Information Integration"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.jii.2023.100469","type":"journal-article","created":{"date-parts":[[2023,4,27]],"date-time":"2023-04-27T01:38:31Z","timestamp":1682559511000},"page":"100469","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data"],"prefix":"10.1016","volume":"33","author":[{"given":"Chao","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4499-492X","authenticated-orcid":false,"given":"Baoping","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Qibing","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Chenyushu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Weifeng","family":"Ge","sequence":"additional","affiliation":[]},{"given":"Zhiming","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Longting","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.jii.2023.100469_bib0001","first-page":"148","article-title":"Law of temperature change and calculation method in subsea Christmas tree internal overflow channel","volume":"46","author":"Wang","year":"2022","journal-title":"J. China University of Petroleum. Edition of Nat. Sci."},{"key":"10.1016\/j.jii.2023.100469_bib0002","article-title":"Fault diagnosis methodology of redundant closed-loop feedback control systems: subsea blowout preventer system as a case study","author":"Kong","year":"2022","journal-title":"IEEE Trans. Syst. Man Cybern. -Syst."},{"issue":"10","key":"10.1016\/j.jii.2023.100469_bib0003","doi-asserted-by":"crossref","first-page":"7262","DOI":"10.1109\/TII.2021.3128245","article-title":"Artificial intelligence enhanced two-stage hybrid fault prognosis methodology of PMSM","volume":"18","author":"Cai","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"8","key":"10.1016\/j.jii.2023.100469_bib0004","doi-asserted-by":"crossref","first-page":"5180","DOI":"10.1109\/TII.2021.3125385","article-title":"A fusion CWSMM-based framework for rotating machinery fault diagnosis under strong interference and imbalanced case","volume":"18","author":"Li","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"1","key":"10.1016\/j.jii.2023.100469_bib0005","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1109\/TII.2021.3070324","article-title":"Deep-learning-based open set fault diagnosis by extreme value theory","volume":"18","author":"Yu","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"8","key":"10.1016\/j.jii.2023.100469_bib0006","doi-asserted-by":"crossref","first-page":"8430","DOI":"10.1109\/TIE.2021.3108726","article-title":"Subdomain adaptation transfer learning network for fault diagnosis of roller bearings","volume":"69","author":"Wang","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"5","key":"10.1016\/j.jii.2023.100469_bib0007","doi-asserted-by":"crossref","first-page":"2227","DOI":"10.1109\/TII.2017.2695583","article-title":"Bayesian networks in fault diagnosis","volume":"13","author":"Cai","year":"2017","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"6","key":"10.1016\/j.jii.2023.100469_bib0008","doi-asserted-by":"crossref","first-page":"6298","DOI":"10.1109\/TIE.2021.3086707","article-title":"A multisource dense adaptation adversarial network for fault diagnosis of machinery","volume":"69","author":"Huang","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"4","key":"10.1016\/j.jii.2023.100469_bib0009","doi-asserted-by":"crossref","first-page":"2833","DOI":"10.1109\/TII.2020.3008010","article-title":"Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning","volume":"17","author":"Li","year":"2021","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.jii.2023.100469_bib0010","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1109\/TASE.2016.2574875","article-title":"A dynamic-bayesian-network-based fault diagnosis methodology considering transient and intermittent faults","volume":"14","author":"Cai","year":"2017","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"4","key":"10.1016\/j.jii.2023.100469_bib0011","doi-asserted-by":"crossref","first-page":"3728","DOI":"10.1109\/TPEL.2021.3123144","article-title":"A hybrid model-based diagnosis approach for open-switch faults in PMSM drives","volume":"37","author":"Huang","year":"2022","journal-title":"IEEE Trans. Power Electron."},{"key":"10.1016\/j.jii.2023.100469_bib0012","article-title":"BIM information integration based VR modeling in digital twins in industry 5.0","volume":"28","author":"Wang","year":"2022","journal-title":"J. Ind. Inf. Integr."},{"issue":"4","key":"10.1016\/j.jii.2023.100469_bib0013","doi-asserted-by":"crossref","first-page":"2811","DOI":"10.1109\/TII.2021.3083596","article-title":"Digital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehicles","volume":"18","author":"Hu","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.jii.2023.100469_bib0014","article-title":"JITL-MBN: a real-time causality representation learning for sensor fault diagnosis of traction drive system in high-speed trains","author":"Chen","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.jii.2023.100469_bib0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110523","article-title":"The replacement of dysfunctional sensors based on the digital twin method during the cutter suction dredger construction process","volume":"189","author":"Wang","year":"2022","journal-title":"Measurement"},{"key":"10.1016\/j.jii.2023.100469_bib0016","doi-asserted-by":"crossref","DOI":"10.1016\/j.anucene.2022.109002","article-title":"A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring","volume":"170","author":"Nguyen","year":"2022","journal-title":"Ann. Nucl. Energy."},{"key":"10.1016\/j.jii.2023.100469_bib0017","article-title":"A novel wind speed-sensing methodology for wind turbines based on digital twin technology","volume":"71","author":"Li","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"4","key":"10.1016\/j.jii.2023.100469_bib0018","doi-asserted-by":"crossref","first-page":"4827","DOI":"10.1109\/JSEN.2020.3029459","article-title":"Sensor-fault detection, isolation and accommodation for digital twins via modular data-driven architecture","volume":"21","author":"Darvishi","year":"2021","journal-title":"IEEE Sens. J."},{"issue":"3","key":"10.1016\/j.jii.2023.100469_bib0019","doi-asserted-by":"crossref","first-page":"2522","DOI":"10.1109\/JSEN.2022.3227713","article-title":"A machine-learning architecture for sensor fault detection, isolation, and accommodation in digital twins","volume":"23","author":"Darvishi","year":"2022","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.jii.2023.100469_bib0020","article-title":"Synchronization of shop-floor logistics and manufacturing under IIoT and digital twin-enabled graduation intelligent manufacturing system","author":"Guo","year":"2022","journal-title":"IEEE T. Cybern"},{"issue":"2","key":"10.1016\/j.jii.2023.100469_bib0021","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1109\/TII.2021.3088407","article-title":"Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks","volume":"18","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"10","key":"10.1016\/j.jii.2023.100469_bib0022","article-title":"Transparent digital twin for output control using belief rule base","volume":"52","author":"Chang","year":"2021","journal-title":"IEEE T. Cybern."},{"issue":"3","key":"10.1016\/j.jii.2023.100469_bib0023","doi-asserted-by":"crossref","first-page":"1530","DOI":"10.1109\/TII.2021.3089340","article-title":"Data-model combined driven digital twin of life-cycle rolling bearing","volume":"18","author":"Qin","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"2","key":"10.1016\/j.jii.2023.100469_bib0024","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1109\/TNNLS.2015.2480545","article-title":"Twin neurons for efficient real-world data distribution in networks of neural cliques: applications in power management in electronic circuits","volume":"27","author":"Boguslawski","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"3","key":"10.1016\/j.jii.2023.100469_bib0025","doi-asserted-by":"crossref","first-page":"1852","DOI":"10.1109\/TII.2020.2988208","article-title":"Fault description based attribute transfer for zero-sample industrial fault diagnosis","volume":"17","author":"Feng","year":"2021","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.jii.2023.100469_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.rinp.2021.105153","article-title":"New solutions for the generalized resonant nonlinear Schr\u00f6dinger equation","volume":"33","author":"Nisar","year":"2022","journal-title":"Results Phys"},{"key":"10.1016\/j.jii.2023.100469_bib0027","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109069","article-title":"Optimal sensor placement methodology of hydraulic control system for fault diagnosis","volume":"174","author":"Kong","year":"2022","journal-title":"Mech. Syst. Signal Proc."},{"key":"10.1016\/j.jii.2023.100469_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108560","article-title":"Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform","volume":"224","author":"Tang","year":"2022","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.jii.2023.100469_bib0029","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115000","article-title":"Data-driven early fault diagnostic methodology of permanent magnet synchronous motor","volume":"177","author":"Cai","year":"2021","journal-title":"Expert Syst. Appl."}],"container-title":["Journal of Industrial Information Integration"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2452414X23000420?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2452414X23000420?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,26]],"date-time":"2024-06-26T19:39:11Z","timestamp":1719430751000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2452414X23000420"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":29,"alternative-id":["S2452414X23000420"],"URL":"https:\/\/doi.org\/10.1016\/j.jii.2023.100469","relation":{},"ISSN":["2452-414X"],"issn-type":[{"value":"2452-414X","type":"print"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data","name":"articletitle","label":"Article Title"},{"value":"Journal of Industrial Information Integration","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jii.2023.100469","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100469"}}