{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,15]],"date-time":"2024-12-15T17:40:01Z","timestamp":1734284401645,"version":"3.30.2"},"reference-count":59,"publisher":"Elsevier BV","issue":"18","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100008530","name":"European Regional Development Fund","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008530","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013704","name":"Consejo Nacional de Ciencia y Tecnolog\u00eda","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013704","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006371","name":"Iberoamerican University Postgraduate Association","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100006371","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100023561","name":"Gobierno de Espa\u00f1a Ministerio de Universidades","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100023561","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of the Franklin Institute"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.jfranklin.2024.107282","type":"journal-article","created":{"date-parts":[[2024,9,17]],"date-time":"2024-09-17T18:10:25Z","timestamp":1726596625000},"page":"107282","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"title":["Blind non-linear spectral unmixing with spatial coherence for hyper and multispectral images"],"prefix":"10.1016","volume":"361","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9740-1190","authenticated-orcid":false,"given":"Juan N.","family":"Mendoza-Chavarr\u00eda","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8034-8530","authenticated-orcid":false,"given":"In\u00e9s A.","family":"Cruz-Guerrero","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9078-2250","authenticated-orcid":false,"given":"Omar","family":"Gutierrez-Navarro","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4287-3200","authenticated-orcid":false,"given":"Raquel","family":"Leon","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7519-954X","authenticated-orcid":false,"given":"Samuel","family":"Ortega","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9794-490X","authenticated-orcid":false,"given":"Himar","family":"Fabelo","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3784-5504","authenticated-orcid":false,"given":"Gustavo M.","family":"Callico","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1555-0131","authenticated-orcid":false,"given":"Daniel Ulises","family":"Campos-Delgado","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jfranklin.2024.107282_b1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11432-020-3084-1","article-title":"Multimodal hyperspectral remote sensing: An overview and perspective","volume":"64","author":"Gu","year":"2021","journal-title":"Sci. China Inf. Sci."},{"key":"10.1016\/j.jfranklin.2024.107282_b2","series-title":"Data Handling in Science and Technology","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1016\/B978-0-444-63977-6.00021-3","article-title":"Hyperspectral imaging in medical applications","volume":"Vol. 32","author":"Fei","year":"2019"},{"issue":"14","key":"10.1016\/j.jfranklin.2024.107282_b3","doi-asserted-by":"crossref","first-page":"3071","DOI":"10.3390\/s19143071","article-title":"Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems","volume":"19","author":"Stuart","year":"2019","journal-title":"Sensors"},{"issue":"16","key":"10.1016\/j.jfranklin.2024.107282_b4","doi-asserted-by":"crossref","first-page":"2659","DOI":"10.3390\/rs12162659","article-title":"Recent advances of hyperspectral imaging technology and applications in agriculture","volume":"12","author":"Lu","year":"2020","journal-title":"Remote Sens."},{"year":"2019","series-title":"Hyperspectral Imaging","author":"Amigo","key":"10.1016\/j.jfranklin.2024.107282_b5"},{"key":"10.1016\/j.jfranklin.2024.107282_b6","series-title":"Data Handling in Science and Technology","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/B978-0-444-63638-6.00006-1","article-title":"Linear and nonlinear unmixing in hyperspectral imaging","volume":"Vol. 30","author":"Dobigeon","year":"2016"},{"key":"10.1016\/j.jfranklin.2024.107282_b7","doi-asserted-by":"crossref","first-page":"4414","DOI":"10.1109\/JSTARS.2022.3175257","article-title":"Hyperspectral unmixing based on nonnegative matrix factorization: A comprehensive review","volume":"15","author":"Feng","year":"2022","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"2","key":"10.1016\/j.jfranklin.2024.107282_b8","doi-asserted-by":"crossref","first-page":"1501","DOI":"10.1109\/TGRS.2020.2996688","article-title":"Self-paced nonnegative matrix factorization for hyperspectral unmixing","volume":"59","author":"Peng","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b9","doi-asserted-by":"crossref","first-page":"S110","DOI":"10.1016\/j.rse.2007.07.028","article-title":"Recent advances in techniques for hyperspectral image processing","volume":"113","author":"Plaza","year":"2009","journal-title":"Remote Sens. Environ."},{"issue":"11","key":"10.1016\/j.jfranklin.2024.107282_b10","doi-asserted-by":"crossref","first-page":"4123","DOI":"10.1109\/TGRS.2011.2142419","article-title":"Component analysis-based unsupervised linear spectral mixture analysis for hyperspectral imagery","volume":"49","author":"Chang","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b11","series-title":"2014 IEEE Geoscience and Remote Sensing Symposium","first-page":"3458","article-title":"Semi-supervised hyperspectral unmixing","author":"Sigurdsson","year":"2014"},{"issue":"8","key":"10.1016\/j.jfranklin.2024.107282_b12","doi-asserted-by":"crossref","first-page":"4391","DOI":"10.1109\/TGRS.2018.2818159","article-title":"Hyperspectral anomaly detection through spectral unmixing and dictionary-based low-rank decomposition","volume":"56","author":"Qu","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b13","first-page":"1","article-title":"Learnable background endmember with subspace representation for hyperspectral anomaly detection","volume":"62","author":"Guo","year":"2024","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b14","first-page":"1","article-title":"Anomaly detection of hyperspectral image with hierarchical antinoise mutual-incoherence- induced low-rank representation","volume":"61","author":"Guo","year":"2023","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b15","first-page":"1","article-title":"An overview on linear unmixing of hyperspectral data","volume":"2020","author":"Wei","year":"2020","journal-title":"Math. Probl. Eng."},{"issue":"11","key":"10.1016\/j.jfranklin.2024.107282_b16","doi-asserted-by":"crossref","first-page":"2951","DOI":"10.1080\/01431160802558659","article-title":"Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data","volume":"30","author":"Fan","year":"2009","journal-title":"Int. J. Remote Sens."},{"issue":"11","key":"10.1016\/j.jfranklin.2024.107282_b17","doi-asserted-by":"crossref","first-page":"4153","DOI":"10.1109\/TGRS.2010.2098414","article-title":"Nonlinear unmixing of hyperspectral images using a generalized bilinear model","volume":"49","author":"Halimi","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"6","key":"10.1016\/j.jfranklin.2024.107282_b18","doi-asserted-by":"crossref","first-page":"3017","DOI":"10.1109\/TIP.2012.2187668","article-title":"Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery","volume":"21","author":"Altmann","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.jfranklin.2024.107282_b19","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1109\/TGRS.2015.2453915","article-title":"A multilinear mixing model for nonlinear spectral unmixing","volume":"54","author":"Heylen","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b20","first-page":"1","article-title":"DAAN: A deep autoencoder-based augmented network for blind multilinear hyperspectral unmixing","volume":"62","author":"Su","year":"2024","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"11","key":"10.1016\/j.jfranklin.2024.107282_b21","doi-asserted-by":"crossref","first-page":"6747","DOI":"10.1109\/TGRS.2018.2842707","article-title":"Band-wise nonlinear unmixing for hyperspectral imagery using an extended multilinear mixing model","volume":"56","author":"Yang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"19","key":"10.1016\/j.jfranklin.2024.107282_b22","doi-asserted-by":"crossref","first-page":"2188","DOI":"10.3390\/rs11192188","article-title":"A graph regularized multilinear mixing model for nonlinear hyperspectral unmixing","volume":"11","author":"Li","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b23","series-title":"2020 IEEE International Conference on Visual Communications and Image Processing","first-page":"193","article-title":"A robust multilinear mixing model with l2,1 norm for unmixing hyperspectral images","author":"Li","year":"2020"},{"issue":"8","key":"10.1016\/j.jfranklin.2024.107282_b24","doi-asserted-by":"crossref","first-page":"4534","DOI":"10.1109\/TGRS.2017.2693366","article-title":"Unsupervised nonlinear spectral unmixing based on a multilinear mixing model","volume":"55","author":"Wei","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2022.108718","article-title":"Nonlinear extended blind end-member and abundance extraction for hyperspectral images","volume":"201","author":"Campos-Delgado","year":"2022","journal-title":"Signal Process."},{"key":"10.1016\/j.jfranklin.2024.107282_b26","doi-asserted-by":"crossref","first-page":"178539","DOI":"10.1109\/ACCESS.2019.2958985","article-title":"Extended blind end-member and abundance extraction for biomedical imaging applications","volume":"7","author":"Campos-Delgado","year":"2019","journal-title":"IEEE Access"},{"year":"1984","series-title":"Linear And Nonlinear Programming","author":"Luenberger","key":"10.1016\/j.jfranklin.2024.107282_b27"},{"key":"10.1016\/j.jfranklin.2024.107282_b28","first-page":"1","article-title":"A coarse-to-fine scheme for unsupervised nonlinear hyperspectral unmixing based on an extended multilinear mixing model","volume":"61","author":"Li","year":"2023","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b29","first-page":"1","article-title":"EMLM-net: An extended multilinear mixing model-inspired dual-stream network for unsupervised nonlinear hyperspectral unmixing","volume":"62","author":"Li","year":"2024","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"10","key":"10.1016\/j.jfranklin.2024.107282_b30","doi-asserted-by":"crossref","first-page":"6298","DOI":"10.1109\/TGRS.2013.2296031","article-title":"Spectral\u2013spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization","volume":"52","author":"Khodadadzadeh","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"11","key":"10.1016\/j.jfranklin.2024.107282_b31","doi-asserted-by":"crossref","first-page":"4484","DOI":"10.1109\/TGRS.2012.2191590","article-title":"Total variation spatial regularization for sparse hyperspectral unmixing","volume":"50","author":"Iordache","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.jfranklin.2024.107282_b32","first-page":"442","article-title":"Hyperspectral image denoising using spatio-spectral total variation","volume":"13","author":"Aggarwal","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jfranklin.2024.107282_b33","first-page":"10","article-title":"Total variation regularization algorithms for images corrupted with different noise models: a review","volume":"2013","author":"Rodr\u00edguez","year":"2013","journal-title":"J. Electr. Comput. Eng."},{"key":"10.1016\/j.jfranklin.2024.107282_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2020.107607","article-title":"Denoising hyperspectral images using an improved SSTV correntropy based method in the presence of non-Gaussian noise","volume":"174","author":"Mohajeran","year":"2020","journal-title":"Signal Process."},{"issue":"1\u20134","key":"10.1016\/j.jfranklin.2024.107282_b35","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","article-title":"Nonlinear total variation based noise removal algorithms","volume":"60","author":"Rudin","year":"1992","journal-title":"Phys. D"},{"issue":"7","key":"10.1016\/j.jfranklin.2024.107282_b36","doi-asserted-by":"crossref","first-page":"4045","DOI":"10.1109\/TGRS.2012.2227764","article-title":"Deblurring and sparse unmixing for hyperspectral images","volume":"51","author":"Zhao","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2020.107805","article-title":"Hyperspectral image denoising via global spatial-spectral total variation regularized nonconvex local low-rank tensor approximation","volume":"178","author":"Zeng","year":"2021","journal-title":"Signal Process."},{"issue":"2","key":"10.1016\/j.jfranklin.2024.107282_b38","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1080\/01431161.2017.1382742","article-title":"Joint weighted nuclear norm and total variation regularization for hyperspectral image denoising","volume":"39","author":"Du","year":"2018","journal-title":"Int. J. Remote Sens."},{"issue":"1","key":"10.1016\/j.jfranklin.2024.107282_b39","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1109\/TGRS.2015.2452812","article-title":"Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration","volume":"54","author":"He","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.jfranklin.2024.107282_b40","doi-asserted-by":"crossref","first-page":"2341","DOI":"10.1109\/TGRS.2018.2872888","article-title":"Hyperspectral unmixing via total variation regularized nonnegative tensor factorization","volume":"57","author":"Xiong","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b41","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.ins.2019.07.063","article-title":"Bilateral filter based total variation regularization for sparse hyperspectral image unmixing","volume":"504","author":"Li","year":"2019","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.jfranklin.2024.107282_b42","doi-asserted-by":"crossref","first-page":"3338","DOI":"10.1109\/TGRS.2020.3020810","article-title":"Blind hyperspectral unmixing based on graph total variation regularization","volume":"59","author":"Qin","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LGRS.2022.3192912","article-title":"Graph spatio-spectral total variation model for hyperspectral image denoising","volume":"19","author":"Takemoto","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jfranklin.2024.107282_b44","first-page":"1","article-title":"Sparsity-enhanced convolutional decomposition: A novel tensor-based paradigm for blind hyperspectral unmixing","volume":"60","author":"Yao","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"15","key":"10.1016\/j.jfranklin.2024.107282_b45","doi-asserted-by":"crossref","first-page":"11165","DOI":"10.1016\/j.jfranklin.2023.08.027","article-title":"Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction","volume":"360","author":"Cruz-Guerrero","year":"2023","journal-title":"J. Franklin Inst."},{"issue":"5","key":"10.1016\/j.jfranklin.2024.107282_b46","doi-asserted-by":"crossref","DOI":"10.3390\/jimaging5050052","article-title":"Deep learning meets hyperspectral image analysis: A multidisciplinary review","volume":"5","author":"Signoroni","year":"2019","journal-title":"J. Imaging"},{"issue":"2","key":"10.1016\/j.jfranklin.2024.107282_b47","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1109\/MSP.2022.3208987","article-title":"Integration of physics-based and data-driven models for hyperspectral image unmixing: A summary of current methods","volume":"40","author":"Chen","year":"2023","journal-title":"IEEE Signal Process. Mag."},{"issue":"11","key":"10.1016\/j.jfranklin.2024.107282_b48","doi-asserted-by":"crossref","DOI":"10.3390\/rs15112898","article-title":"A multi-attention autoencoder for hyperspectral unmixing based on the extended linear mixing model","volume":"15","author":"Su","year":"2023","journal-title":"Remote Sens."},{"issue":"2","key":"10.1016\/j.jfranklin.2024.107282_b49","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1016\/j.jmaa.2010.07.013","article-title":"Split bregman iteration algorithm for total bounded variation regularization based image deblurring","volume":"372","author":"Liu","year":"2010","journal-title":"J. Math. Anal. Appl."},{"issue":"7","key":"10.1016\/j.jfranklin.2024.107282_b50","doi-asserted-by":"crossref","first-page":"1553","DOI":"10.1080\/014311697218278","article-title":"Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, USA","volume":"18","author":"Resmini","year":"1997","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b51","series-title":"Artificial Intelligence in Cancer Diagnosis and Prognosis, Volume 3: Brain and Prostate Cancer","first-page":"9","article-title":"A hybrid approach to the hyperspectral classification of in vivo brain tissue: linear unmixing with spatial coherence and machine learning","author":"Cruz-Guerrero","year":"2022"},{"issue":"2","key":"10.1016\/j.jfranklin.2024.107282_b52","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1137\/080725891","article-title":"The split Bregman method for L1-regularized problems","volume":"2","author":"Goldstein","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"year":"2014","series-title":"A convergence proof of the split Bregman method for regularized least-squares problems","author":"Nien","key":"10.1016\/j.jfranklin.2024.107282_b53"},{"issue":"4","key":"10.1016\/j.jfranklin.2024.107282_b54","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1109\/TGRS.2005.844293","article-title":"Vertex component analysis: A fast algorithm to unmix hyperspectral data","volume":"43","author":"Nascimento","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jfranklin.2024.107282_b55","doi-asserted-by":"crossref","first-page":"39098","DOI":"10.1109\/ACCESS.2019.2904788","article-title":"In-vivo hyperspectral human brain image database for brain cancer detection","volume":"7","author":"Fabelo","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jfranklin.2024.107282_b56","doi-asserted-by":"crossref","DOI":"10.1016\/j.dib.2023.109526","article-title":"Hyperspectral placenta dataset: Hyperspectral image acquisition, annotations, and processing of biological tissues in microsurgical training","volume":"50","author":"Puustinen","year":"2023","journal-title":"Data Brief"},{"key":"10.1016\/j.jfranklin.2024.107282_b57","series-title":"International Conference on Machine Learning","first-page":"115","article-title":"Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures","author":"Bergstra","year":"2013"},{"issue":"9","key":"10.1016\/j.jfranklin.2024.107282_b58","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.3390\/rs11091045","article-title":"A spectral unmixing method by maximum margin criterion and derivative weights to address spectral variability in hyperspectral imagery","volume":"11","author":"Shao","year":"2019","journal-title":"Remote Sens."},{"issue":"16","key":"10.1016\/j.jfranklin.2024.107282_b59","doi-asserted-by":"crossref","first-page":"5686","DOI":"10.3390\/app10165686","article-title":"Classification of hyperspectral in vivo brain tissue based on linear unmixing","volume":"10","author":"Cruz-Guerrero","year":"2020","journal-title":"Appl. Sci."}],"container-title":["Journal of the Franklin Institute"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0016003224007038?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0016003224007038?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,15]],"date-time":"2024-12-15T17:19:34Z","timestamp":1734283174000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0016003224007038"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":59,"journal-issue":{"issue":"18","published-print":{"date-parts":[[2024,12]]}},"alternative-id":["S0016003224007038"],"URL":"https:\/\/doi.org\/10.1016\/j.jfranklin.2024.107282","relation":{},"ISSN":["0016-0032"],"issn-type":[{"type":"print","value":"0016-0032"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Blind non-linear spectral unmixing with spatial coherence for hyper and multispectral images","name":"articletitle","label":"Article Title"},{"value":"Journal of the Franklin Institute","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jfranklin.2024.107282","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Franklin Institute. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"107282"}}