{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:54:58Z","timestamp":1732042498966},"reference-count":34,"publisher":"Elsevier BV","issue":"6","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of the Franklin Institute"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.jfranklin.2023.01.033","type":"journal-article","created":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T05:12:47Z","timestamp":1675919567000},"page":"4378-4398","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":39,"title":["Dynamic path planning of mobile robot based on improved simulated annealing algorithm"],"prefix":"10.1016","volume":"360","author":[{"given":"Kun","family":"Shi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7702-5730","authenticated-orcid":false,"given":"Zhengtian","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Baoping","family":"Jiang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7629-3266","authenticated-orcid":false,"given":"Hamid Reza","family":"Karimi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jfranklin.2023.01.033_bib0001","doi-asserted-by":"crossref","first-page":"109298","DOI":"10.1016\/j.automatica.2020.109298","article-title":"Detection of intermittent faults based on an optimally weighted moving average t2 control chart with stationary observations","volume":"123","author":"Zhao","year":"2021","journal-title":"Automatica"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0002","article-title":"Detection and isolation of wheelset intermittent over-creeps for electric multiple units based on a weighted moving average technique","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"02","key":"10.1016\/j.jfranklin.2023.01.033_bib0003","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1142\/S2301385018400022","article-title":"Overview of path-planning and obstacle avoidance algorithms for uavs: a comparative study","volume":"6","author":"Radmanesh","year":"2018","journal-title":"Unmanned Syst."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0004","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.knosys.2018.05.033","article-title":"Survey on computational-intelligence-based uav path planning","volume":"158","author":"Zhao","year":"2018","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0005","doi-asserted-by":"crossref","first-page":"107230","DOI":"10.1016\/j.cie.2021.107230","article-title":"Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm","volume":"156","author":"Miao","year":"2021","journal-title":"Comput. Ind. Eng."},{"issue":"3","key":"10.1016\/j.jfranklin.2023.01.033_bib0006","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1504\/IJBIC.2020.111267","article-title":"An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application","volume":"16","author":"Deng","year":"2020","journal-title":"Int. J. Bio-Inspir. Comput."},{"issue":"10","key":"10.1016\/j.jfranklin.2023.01.033_bib0007","doi-asserted-by":"crossref","first-page":"4354","DOI":"10.1109\/TNNLS.2019.2955137","article-title":"A deterministic annealing neural network algorithm for the minimum concave cost transportation problem","volume":"31","author":"Wu","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0008","doi-asserted-by":"crossref","first-page":"124854","DOI":"10.1016\/j.amc.2019.124854","article-title":"A logarithmic descent direction algorithm for the quadratic knapsack problem","volume":"369","author":"Wu","year":"2020","journal-title":"Appl. Math. Comput."},{"issue":"5","key":"10.1016\/j.jfranklin.2023.01.033_bib0009","first-page":"627","article-title":"An improved a* algorithm for searching infinite neighbourhoods","volume":"36","author":"Xin","year":"2014","journal-title":"Robot"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0010","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.proeng.2014.12.098","article-title":"Path planning with modified a star algorithm for a mobile robot","volume":"96","author":"Ducho\u0148","year":"2014","journal-title":"Procedia Eng."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0011","series-title":"2017 29th Chinese control and decision conference (CCDC)","first-page":"7138","article-title":"Path-planning of automated guided vehicle based on improved dijkstra algorithm","author":"Qing","year":"2017"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0012","doi-asserted-by":"crossref","first-page":"147827","DOI":"10.1109\/ACCESS.2020.3015976","article-title":"Surface optimal path planning using an extended dijkstra algorithm","volume":"8","author":"Luo","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0013","series-title":"2013 International Conference on Signal-Image Technology & Internet-Based Systems","first-page":"726","article-title":"Global path planning for autonomous mobile robot using genetic algorithm","author":"Samadi","year":"2013"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0014","series-title":"2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD)","first-page":"1117","article-title":"An adaptive ant colony algorithm for autonomous vehicles global path planning","author":"Li","year":"2021"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0015","doi-asserted-by":"crossref","DOI":"10.1155\/2013\/491346","article-title":"A new online random particles optimization algorithm for mobile robot path planning in dynamic environments","volume":"2013","author":"Mohajer","year":"2013","journal-title":"Math. Probl. Eng."},{"issue":"5","key":"10.1016\/j.jfranklin.2023.01.033_bib0016","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1017\/S0263574703005666","article-title":"Soccer robot path planning based on the artificial potential field approach with simulated annealing","volume":"22","author":"Zhang","year":"2004","journal-title":"Robotica"},{"issue":"2","key":"10.1016\/j.jfranklin.2023.01.033_bib0017","doi-asserted-by":"crossref","first-page":"571","DOI":"10.3390\/s18020571","article-title":"A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved rrt algorithm","volume":"18","author":"Wei","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0018","series-title":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","first-page":"1121","article-title":"Dynamic path planning based on improved d* algorithms of gaode map","author":"Huang","year":"2019"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0019","doi-asserted-by":"crossref","first-page":"180773","DOI":"10.1109\/ACCESS.2020.3028467","article-title":"Dynamic path planning based on improved ant colony algorithm in traffic congestion","volume":"8","author":"Wu","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0020","doi-asserted-by":"crossref","first-page":"101186","DOI":"10.1109\/ACCESS.2021.3098044","article-title":"Research on the dynamic path planning of manipulators based on a grid-local probability road map method","volume":"9","author":"Liu","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0021","series-title":"2017 IEEE Intelligent Vehicles Symposium (IV)","first-page":"180","article-title":"Modified artificial potential field method for online path planning applications","author":"Bounini","year":"2017"},{"issue":"1","key":"10.1016\/j.jfranklin.2023.01.033_bib0022","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1109\/100.580977","article-title":"The dynamic window approach to collision avoidance","volume":"4","author":"Fox","year":"1997","journal-title":"IEEE Robot. Automat. Mag."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0023","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1016\/j.jocs.2017.08.004","article-title":"Bezier curve based path planning in a dynamic field using modified genetic algorithm","volume":"25","author":"Elhoseny","year":"2018","journal-title":"J. Comput. Sci."},{"issue":"3","key":"10.1016\/j.jfranklin.2023.01.033_bib0024","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1016\/j.euromechsol.2006.10.001","article-title":"A random-profile approach for trajectory planning of wheeled mobile robots","volume":"26","author":"Haddad","year":"2007","journal-title":"Eur. J. Mech.-A\/Solids"},{"issue":"2","key":"10.1016\/j.jfranklin.2023.01.033_bib0025","doi-asserted-by":"crossref","first-page":"426","DOI":"10.3390\/s20020426","article-title":"An autonomous path planning model for unmanned ships based on deep reinforcement learning","volume":"20","author":"Guo","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0026","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.neunet.2019.05.010","article-title":"An approximation algorithm for graph partitioning via deterministic annealing neural network","volume":"117","author":"Wu","year":"2019","journal-title":"Neural Netw."},{"issue":"12","key":"10.1016\/j.jfranklin.2023.01.033_bib0027","doi-asserted-by":"crossref","first-page":"6080","DOI":"10.1016\/j.jfranklin.2022.06.009","article-title":"An approximation lagrangian-based algorithm for the maximum clique problem via deterministic annealing neural network","volume":"359","author":"Dai","year":"2022","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0028","series-title":"Lean and green supply chain management","first-page":"161","article-title":"A Simulated Annealing Algorithm Based Solution Method for a Green Vehicle Routing Problem with Fuel Consumption","author":"Karagul","year":"2019"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0029","series-title":"Journal of Physics: Conference Series","first-page":"012081","article-title":"Research on improved genetic simulated annealing algorithm for multi-uav cooperative task allocation","volume":"volume 2246","author":"Wang","year":"2022"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0030","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.asoc.2019.01.036","article-title":"Mobile robot path planning using membrane evolutionary artificial potential field","volume":"77","author":"Orozco-Rosas","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0031","doi-asserted-by":"crossref","first-page":"19632","DOI":"10.1109\/ACCESS.2021.3052865","article-title":"Global dynamic path planning fusion algorithm combining jump-a* algorithm and dynamic window approach","volume":"9","author":"Liu","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0032","series-title":"2019 IEEE International Conference on Signals and Systems (ICSigSys)","first-page":"110","article-title":"Humanoid robot path planning and rerouting using a-star search algorithm","author":"Kusuma","year":"2019"},{"key":"10.1016\/j.jfranklin.2023.01.033_bib0033","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.eswa.2018.01.050","article-title":"Mobile robots path planning: electrostatic potential field approach","volume":"100","author":"Bayat","year":"2018","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.jfranklin.2023.01.033_bib0034","doi-asserted-by":"crossref","first-page":"1244","DOI":"10.1109\/TASE.2018.2880245","article-title":"Multilevel humanlike motion planning for mobile robots in complex indoor environments","volume":"16","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Autom. Sci. Eng."}],"container-title":["Journal of the Franklin Institute"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0016003223000546?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0016003223000546?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,4]],"date-time":"2023-04-04T23:14:13Z","timestamp":1680650053000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0016003223000546"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":34,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["S0016003223000546"],"URL":"https:\/\/doi.org\/10.1016\/j.jfranklin.2023.01.033","relation":{},"ISSN":["0016-0032"],"issn-type":[{"value":"0016-0032","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dynamic path planning of mobile robot based on improved simulated annealing algorithm","name":"articletitle","label":"Article Title"},{"value":"Journal of the Franklin Institute","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jfranklin.2023.01.033","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}