{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,5]],"date-time":"2025-05-05T06:25:52Z","timestamp":1746426352203,"version":"3.37.3"},"reference-count":40,"publisher":"Elsevier BV","issue":"11","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61203092","61773181"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004281","name":"Narodowe Centrum Nauki","doi-asserted-by":"publisher","award":["2014\/15\/B\/ST7\/03208"],"id":[{"id":"10.13039\/501100004281","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004564","name":"Ministarstvo Prosvete, Nauke i Tehnolo\u0161kog Razvoja","doi-asserted-by":"publisher","award":["451-03-68\/2020-14\/200108"],"id":[{"id":"10.13039\/501100004564","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["JUSRP51733B"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of the Franklin Institute"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1016\/j.jfranklin.2020.04.024","type":"journal-article","created":{"date-parts":[[2020,5,18]],"date-time":"2020-05-18T15:33:10Z","timestamp":1589815990000},"page":"7286-7307","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":256,"title":["An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks"],"prefix":"10.1016","volume":"357","author":[{"given":"Hongfeng","family":"Tao","sequence":"first","affiliation":[]},{"given":"Peng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yiyang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Vladimir","family":"Stojanovic","sequence":"additional","affiliation":[]},{"given":"Huizhong","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jfranklin.2020.04.024_bib0001","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.neucom.2018.05.024","article-title":"An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition","volume":"310","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0002","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.isatra.2018.12.025","article-title":"Deep residual learning-based fault diagnosis method for rotating machinery","volume":"95","author":"Zhang","year":"2019","journal-title":"ISA Transactions"},{"issue":"7","key":"10.1016\/j.jfranklin.2020.04.024_sbref0003","first-page":"1","article-title":"Advance in the study on fault diagnosis of helicopter planetary gears","volume":"38","author":"Sun","year":"2017","journal-title":"Acta Aeronautica Et Astronautica Sinica"},{"issue":"1","key":"10.1016\/j.jfranklin.2020.04.024_bib0004","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.ymssp.2013.01.017","article-title":"Recent advances in time frequency analysis methods for machinery fault diagnosis: a review with application examples","volume":"38","author":"Feng","year":"2013","journal-title":"Mechanical Systems and Signal Processing"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0005","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.knosys.2018.12.019","article-title":"A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults","volume":"165","author":"Han","year":"2019","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0006","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.compeleceng.2015.04.010","article-title":"Crack fault diagnosis of rotor systems using wavelet transforms","volume":"45","author":"Ren","year":"2015","journal-title":"Computers Electrical Engineering"},{"issue":"8","key":"10.1016\/j.jfranklin.2020.04.024_bib0007","doi-asserted-by":"crossref","first-page":"2961","DOI":"10.1016\/j.ymssp.2010.03.008","article-title":"Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT","volume":"24","author":"Liu","year":"2010","journal-title":"Mechanical Systems and Signal Processing"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0008","doi-asserted-by":"crossref","first-page":"764","DOI":"10.1109\/LSP.2005.856878","article-title":"Empirical mode decomposition: an analytical approach for sifting process","volume":"12","author":"Delechelle","year":"2005","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0009","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.measurement.2019.06.029","article-title":"A sparse stacked denoisin autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings","volume":"146","author":"Sun","year":"2019","journal-title":"Measurement"},{"issue":"5","key":"10.1016\/j.jfranklin.2020.04.024_bib0010","doi-asserted-by":"crossref","first-page":"2363","DOI":"10.1109\/TIE.2011.2167893","article-title":"Local and nonlocal preserving projection for bearing defect classi?cation and performance assessment","volume":"59","author":"Yu","year":"2012","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0011","first-page":"1","article-title":"Multidomain features-based GA optimized artificial immune system for bearing fault detection","author":"Abid","year":"2018","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"issue":"18","key":"10.1016\/j.jfranklin.2020.04.024_bib0012","first-page":"173","article-title":"Bearing fault identification by using deep convolution neural networks based on CNN-SVM","volume":"38","author":"Hu","year":"2019","journal-title":"Journal of Vibration and Shock"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0013","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/j.ymssp.2017.06.022","article-title":"A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load","volume":"100","author":"Zhang","year":"2018","journal-title":"Mechanical Systems and Signal Processing"},{"issue":"7","key":"10.1016\/j.jfranklin.2020.04.024_bib0014","doi-asserted-by":"crossref","first-page":"3235","DOI":"10.1109\/TII.2018.2809730","article-title":"Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE","volume":"14","author":"Yuan","year":"2018","journal-title":"IEEE Transactions on Industrial Informatics"},{"issue":"5","key":"10.1016\/j.jfranklin.2020.04.024_bib0015","doi-asserted-by":"crossref","first-page":"3168","DOI":"10.1109\/TII.2019.2902129","article-title":"Nonlinear dynamic soft sensor modeling with supervised long short-term memory network","volume":"16","author":"Yuan","year":"2020","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0016","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.isatra.2019.07.001","article-title":"A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network","volume":"96","author":"Wang","year":"2020","journal-title":"ISA Transactions"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0017","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.aei.2017.02.005","article-title":"Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification","volume":"32","author":"Lu","year":"2017","journal-title":"Advanced Engineering Informatics"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0018","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.compind.2019.103132","article-title":"Compound fault diagnosis of gearboxes via multi-label convolutional neyral network and wavelet transform","volume":"113","author":"Liang","year":"2019","journal-title":"Computers in Industry"},{"issue":"19","key":"10.1016\/j.jfranklin.2020.04.024_bib0019","first-page":"124","article-title":"Fault diagnosis method for rolling bearings based on short-time fourier transform and convolution network","volume":"37","author":"Li","year":"2018","journal-title":"Journal of Vibration and Shock"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0020","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.ymssp.2019.05.049","article-title":"Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks","volume":"131","author":"Zhang","year":"2019","journal-title":"Mechanical Systems and Signal Processing"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0021","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1016\/j.neucom.2018.07.034","article-title":"Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks","volume":"315","author":"Liu","year":"2018","journal-title":"Neurocomputing"},{"issue":"21","key":"10.1016\/j.jfranklin.2020.04.024_bib0022","doi-asserted-by":"crossref","first-page":"49","DOI":"10.3901\/JME.2015.21.049","article-title":"A deep learning-based method for machinery health monitoring with big data","volume":"51","author":"Lei","year":"2015","journal-title":"J. Mech. Eng."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0023","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Computation"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0024","first-page":"2672","article-title":"Generative adversarial networks","volume":"3","author":"Goodfellow","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"11","key":"10.1016\/j.jfranklin.2020.04.024_bib0025","doi-asserted-by":"crossref","first-page":"5079","DOI":"10.1007\/s12206-018-1004-0","article-title":"Fault diagnosis method of rolling bearing using principal component analysis and support vector machine","volume":"32","author":"Gu","year":"2018","journal-title":"Journal of Mechnical Science and Technology"},{"issue":"5","key":"10.1016\/j.jfranklin.2020.04.024_bib0026","doi-asserted-by":"crossref","first-page":"3137","DOI":"10.1109\/TIE.2016.2519325","article-title":"An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data","volume":"63","author":"Lei","year":"2016","journal-title":"IEEE Transactions on Industrial Electronics"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0027","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.measurement.2016.04.007","article-title":"A sparse auto-encoder-based deep neural network approach for induction motor faults classification","volume":"89","author":"Sun","year":"2016","journal-title":"Measurement"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0028","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2016.10.022","article-title":"A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection","volume":"116","author":"Wei","year":"2017","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0029","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1016\/j.asoc.2018.09.037","article-title":"Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and gath-geva clustering algorithm without principal component analysis and data label","volume":"73","author":"Xu","year":"2018","journal-title":"Applied Soft Computing Journal"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0030","article-title":"Unsupervised and semi-supervised learning with categorical generative adversarial networks","author":"Springenberg","year":"2016","journal-title":"ICLR"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0031","article-title":"Adversarial autoencoders","author":"Makhzani","year":"2016","journal-title":"ICLR"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0032","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.measurement.2019.05.079","article-title":"Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals","volume":"145","author":"Thomazella","year":"2019","journal-title":"Measurement"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0033","unstructured":"M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan, arxiv preprint, 2017, ArXiv: 1701.07875."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0034","unstructured":"A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arxiv preprint, 2015. ArXiv: 1511.06434."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0035","unstructured":"S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arxiv preprint, 2015, ArXiv: 1502.03167."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0036","unstructured":"G.E. Hinton, N. Srivastava, A. Krizhevsky, et\u00a0al., Improving neural networks by preventing co-adaptation of feature detectors, arxiv preprint, 2012. ArXiv: 1207.0580."},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0037","unstructured":"\u2019case western reserve university bearing data center website\u2019, http:\/\/csegroups.case.edu\/bearingdatacenter\/pages\/download-data-file, 2016."},{"issue":"2","key":"10.1016\/j.jfranklin.2020.04.024_bib0038","doi-asserted-by":"crossref","first-page":"425","DOI":"10.3390\/s17020425","article-title":"A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals","volume":"17","author":"Zhang","year":"2017","journal-title":"Sensors"},{"key":"10.1016\/j.jfranklin.2020.04.024_bib0039","series-title":"Advances in Neural Information Processing Systems (NIPS) 23","article-title":"Discriminative clustering by regularized information maximization","author":"Gomes","year":"2010"},{"issue":"7","key":"10.1016\/j.jfranklin.2020.04.024_bib0040","doi-asserted-by":"crossref","first-page":"1739","DOI":"10.1109\/TVCG.2016.2570755","article-title":"Approximated and user steerable tSNE for progressive visual analytics","volume":"23","author":"Pezzotti","year":"2016","journal-title":"IEEE Transactions on Visualization and Computer Graphics"}],"container-title":["Journal of the Franklin Institute"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0016003220302544?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0016003220302544?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T03:15:29Z","timestamp":1655954129000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0016003220302544"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":40,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2020,7]]}},"alternative-id":["S0016003220302544"],"URL":"https:\/\/doi.org\/10.1016\/j.jfranklin.2020.04.024","relation":{},"ISSN":["0016-0032"],"issn-type":[{"type":"print","value":"0016-0032"}],"subject":[],"published":{"date-parts":[[2020,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks","name":"articletitle","label":"Article Title"},{"value":"Journal of the Franklin Institute","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jfranklin.2020.04.024","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}