{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T17:23:13Z","timestamp":1726420993945},"reference-count":26,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Combinatorial Theory, Series A"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.jcta.2022.105608","type":"journal-article","created":{"date-parts":[[2022,2,25]],"date-time":"2022-02-25T16:55:27Z","timestamp":1645808127000},"page":"105608","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["On the e-positivity of trees and spiders"],"prefix":"10.1016","volume":"189","author":[{"given":"Kai","family":"Zheng","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcta.2022.105608_br0010","unstructured":"F. Aliniaeifard, S. van Willigenburg, V. Wang, Communicated with permission, 2020."},{"key":"10.1016\/j.jcta.2022.105608_br0020","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.disc.2013.10.016","article-title":"Proper caterpillars are distinguished by their chromatic symmetric function","volume":"315","author":"Aliste-Prieto","year":"2014","journal-title":"Discrete Math."},{"key":"10.1016\/j.jcta.2022.105608_br0030","doi-asserted-by":"crossref","first-page":"1435","DOI":"10.1016\/j.disc.2016.09.019","article-title":"On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem","volume":"340","author":"Aliste-Prieto","year":"2017","journal-title":"Discrete Math."},{"key":"10.1016\/j.jcta.2022.105608_br0040","doi-asserted-by":"crossref","first-page":"2286","DOI":"10.1137\/18M1216201","article-title":"On e-positivity and e-unimodality of chromatic quasisymmetric functions","volume":"33","author":"Cho","year":"2019","journal-title":"SIAM J. Discrete Math."},{"key":"10.1016\/j.jcta.2022.105608_br0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejc.2020.103143","article-title":"A deletion-contraction relation for the chromatic symmetric function","volume":"89","author":"Crew","year":"2020","journal-title":"Eur. J. Comb."},{"author":"Dahlberg","key":"10.1016\/j.jcta.2022.105608_br0060"},{"key":"10.1016\/j.jcta.2022.105608_br0070","doi-asserted-by":"crossref","first-page":"1029","DOI":"10.1137\/17M1144805","article-title":"Lollipop and lariat symmetric functions","volume":"32","author":"Dahlberg","year":"2018","journal-title":"SIAM J. Discrete Math."},{"key":"10.1016\/j.jcta.2022.105608_br0080","article-title":"Schur and e-positivity of trees and cut vertices","volume":"27","author":"Dahlberg","year":"2020","journal-title":"Electron. J. Comb."},{"key":"10.1016\/j.jcta.2022.105608_br0090","article-title":"Classes of graphs with e-positive chromatic symmetric function","volume":"26","author":"Foley","year":"2019","journal-title":"Electron. J. Comb."},{"author":"Foley","key":"10.1016\/j.jcta.2022.105608_br0100"},{"key":"10.1016\/j.jcta.2022.105608_br0110","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/S0012-365X(96)83014-7","article-title":"Incomparability graphs of (3 + 1)-free posets are s-positive","volume":"157","author":"Gasharov","year":"1996","journal-title":"Discrete Math."},{"key":"10.1016\/j.jcta.2022.105608_br0120","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/S0012-365X(99)00106-5","article-title":"On Stanley's chromatic symmetric function and clawfree graphs","volume":"205","author":"Gasharov","year":"1999","journal-title":"Discrete Math."},{"key":"10.1016\/j.jcta.2022.105608_br0130","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1023\/A:1011258714032","article-title":"A chromatic symmetric function in noncommuting variables","volume":"13","author":"Gebhard","year":"2001","journal-title":"J. Algebraic Comb."},{"author":"Guay-Paquet","key":"10.1016\/j.jcta.2022.105608_br0140"},{"key":"10.1016\/j.jcta.2022.105608_br0150","first-page":"210","article-title":"On an algorithm for comparing the chromatic symmetric functions of trees","volume":"75","author":"Heil","year":"2019","journal-title":"Australas. J. Comb."},{"key":"10.1016\/j.jcta.2022.105608_br0160","doi-asserted-by":"crossref","first-page":"357","DOI":"10.4171\/AIHPD\/74","article-title":"Isomorphisms of weighted trees and Stanley's conjecture for caterpillars","volume":"6","author":"Loebl","year":"2019","journal-title":"Ann. Inst. Henri Poincar\u00e9 D"},{"year":"1998","series-title":"Symmetric Functions and Hall Polynomials","author":"Macdonald","key":"10.1016\/j.jcta.2022.105608_br0170"},{"key":"10.1016\/j.jcta.2022.105608_br0180","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.jcta.2007.05.008","article-title":"On distinguishing trees by their chromatic symmetric functions","volume":"115","author":"Martin","year":"2008","journal-title":"J. Comb. Theory, Ser. A"},{"key":"10.1016\/j.jcta.2022.105608_br0190","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.disc.2013.12.006","article-title":"Graphs with equal chromatic symmetric function","volume":"320","author":"Orellana","year":"2014","journal-title":"Discrete Math."},{"year":"2001","series-title":"The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions","author":"Sagan","key":"10.1016\/j.jcta.2022.105608_br0200"},{"key":"10.1016\/j.jcta.2022.105608_br0210","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1016\/j.aim.2015.12.018","article-title":"Chromatic quasisymmetric functions","volume":"295","author":"Shareshian","year":"2016","journal-title":"Adv. Math."},{"key":"10.1016\/j.jcta.2022.105608_br0220","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1006\/aima.1995.1020","article-title":"A symmetric function generalization of the chromatic polynomial of a graph","volume":"111","author":"Stanley","year":"1995","journal-title":"Adv. Math."},{"key":"10.1016\/j.jcta.2022.105608_br0230","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/0097-3165(93)90048-D","article-title":"On immanants of Jacobi-Trudi matrices and permutations with restricted position","volume":"62","author":"Stanley","year":"1993","journal-title":"J. Comb. Theory, Ser. A"},{"author":"Wang","key":"10.1016\/j.jcta.2022.105608_br0240"},{"key":"10.1016\/j.jcta.2022.105608_br0250","first-page":"643","article-title":"Symmetric chromatic functions","volume":"10","author":"Wolfe","year":"1998","journal-title":"Pi Mu Epsil. J."},{"year":"1997","series-title":"Two Interactions Between Combinatorics and Representation Theory: Monomial Immanants and Hochschild Cohomology","author":"Wolfgang","key":"10.1016\/j.jcta.2022.105608_br0260"}],"container-title":["Journal of Combinatorial Theory, Series A"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097316522000164?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097316522000164?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T05:54:49Z","timestamp":1672811689000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0097316522000164"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":26,"alternative-id":["S0097316522000164"],"URL":"https:\/\/doi.org\/10.1016\/j.jcta.2022.105608","relation":{},"ISSN":["0097-3165"],"issn-type":[{"type":"print","value":"0097-3165"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On the e-positivity of trees and spiders","name":"articletitle","label":"Article Title"},{"value":"Journal of Combinatorial Theory, Series A","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcta.2022.105608","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105608"}}