{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T21:14:25Z","timestamp":1723151665696},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,2,1]],"date-time":"2018-02-01T00:00:00Z","timestamp":1517443200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"name":"UIUC Campus Research Board","award":["RB15060"]},{"name":"NSF DMS","award":["1500691"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Combinatorial Theory, Series A"],"published-print":{"date-parts":[[2018,2]]},"DOI":"10.1016\/j.jcta.2017.09.009","type":"journal-article","created":{"date-parts":[[2017,11,6]],"date-time":"2017-11-06T09:15:17Z","timestamp":1509959717000},"page":"551-582","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["The Prism tableau model for Schubert polynomials"],"prefix":"10.1016","volume":"154","author":[{"given":"Anna","family":"Weigandt","sequence":"first","affiliation":[]},{"given":"Alexander","family":"Yong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcta.2017.09.009_br0010","author":"Assaf"},{"issue":"4","key":"10.1016\/j.jcta.2017.09.009_br0020","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1080\/10586458.1993.10504567","article-title":"RC-graphs and Schubert polynomials","volume":"2","author":"Bergeron","year":"1993","journal-title":"Exp. Math."},{"issue":"2","key":"10.1016\/j.jcta.2017.09.009_br0060","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1215\/S0012-7094-98-09511-4","article-title":"Schubert polynomials, the Bruhat order, and the geometry of flag manifolds","volume":"95","author":"Bergeron","year":"1998","journal-title":"Duke Math. J."},{"issue":"2","key":"10.1016\/j.jcta.2017.09.009_br0070","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1090\/S0002-9947-01-02845-8","article-title":"Skew Schubert functions and the Pieri formula for flag manifolds","volume":"354","author":"Bergeron","year":"2002","journal-title":"Trans. Amer. Math. Soc."},{"issue":"4","key":"10.1016\/j.jcta.2017.09.009_br0030","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1023\/A:1022419800503","article-title":"Some combinatorial properties of Schubert polynomials","volume":"2","author":"Billey","year":"1993","journal-title":"J. Algebraic Combin."},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0050","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/0012-365X(94)00125-3","article-title":"Sur les matrices a signes alternants","volume":"139","author":"Bousquet-M\u00e9lou","year":"1995","journal-title":"Discrete Math."},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0040","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1215\/S0012-7094-04-12214-6","article-title":"Schubert polynomials and quiver formulas","volume":"122","author":"Buch","year":"2004","journal-title":"Duke Math. J."},{"issue":"8","key":"10.1016\/j.jcta.2017.09.009_br0080","doi-asserted-by":"crossref","first-page":"1976","DOI":"10.1016\/j.jcta.2013.08.001","article-title":"Tower tableaux and Schubert polynomials","volume":"120","author":"Co\u015fkun","year":"2013","journal-title":"J. Combin. Theory Ser. A"},{"issue":"4","key":"10.1016\/j.jcta.2017.09.009_br0110","doi-asserted-by":"crossref","first-page":"418","DOI":"10.2478\/BF02475176","article-title":"Schur and Schubert polynomials as Thom polynomials\u2014cohomology of moduli spaces","volume":"1","author":"Feh\u00e9r","year":"2003","journal-title":"Cent. Eur. J. Math."},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0100","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/0012-365X(95)00132-G","article-title":"The Yang\u2013Baxter equation, symmetric functions, and Schubert polynomials","volume":"153","author":"Fomin","year":"1996","journal-title":"Discrete Math."},{"issue":"2","key":"10.1016\/j.jcta.2017.09.009_br0120","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1006\/aima.1994.1009","article-title":"Schubert polynomials and the nilCoxeter algebra","volume":"103","author":"Fomin","year":"1994","journal-title":"Adv. Math."},{"issue":"4","key":"10.1016\/j.jcta.2017.09.009_br0090","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1006\/eujc.1996.0109","article-title":"Balanced labellings and Schubert polynomials","volume":"18","author":"Fomin","year":"1997","journal-title":"European J. Combin."},{"issue":"3","key":"10.1016\/j.jcta.2017.09.009_br0130","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1215\/S0012-7094-92-06516-1","article-title":"Flags, Schubert polynomials, degeneracy loci, and determinantal formulas","volume":"65","author":"Fulton","year":"1992","journal-title":"Duke Math. J."},{"issue":"2","key":"10.1016\/j.jcta.2017.09.009_br0210","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1006\/aima.1995.1071","article-title":"Initial complexes of prime ideals","volume":"116","author":"Kalkbrener","year":"1995","journal-title":"Adv. Math."},{"key":"10.1016\/j.jcta.2017.09.009_br0170","author":"Knutson"},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0140","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/S0001-8708(03)00142-7","article-title":"Subword complexes in Coxeter groups","volume":"184","author":"Knutson","year":"2004","journal-title":"Adv. Math."},{"key":"10.1016\/j.jcta.2017.09.009_br0150","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.4007\/annals.2005.161.1245","article-title":"Gr\u00f6bner geometry of Schubert polynomials","author":"Knutson","year":"2005","journal-title":"Ann. of Math."},{"issue":"630","key":"10.1016\/j.jcta.2017.09.009_br0160","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1515\/CRELLE.2009.033","article-title":"Gr\u00f6bner geometry of vertex decompositions and of flagged tableaux","volume":"2009","author":"Knutson","year":"2009","journal-title":"J. Reine Angew. Math. (Crelles J.)"},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0180","doi-asserted-by":"crossref","first-page":"N27","DOI":"10.37236\/476","article-title":"Bijection between bigrassmannian permutations maximal below a permutation and its essential set","volume":"17","author":"Kobayashi","year":"2010","journal-title":"Electron. J. Combin."},{"key":"10.1016\/j.jcta.2017.09.009_br0190","series-title":"Schubert Geometry of Flag Varieties and Gelfand\u2013Cetlin Theory","author":"Kogan","year":"2000"},{"key":"10.1016\/j.jcta.2017.09.009_br0200","series-title":"Weintrauben, Polynome, Tableaux","author":"Kohnert","year":"1990"},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0220","article-title":"Chern and Yang through ice","author":"Lascoux","year":"2008","journal-title":"Selecta Math."},{"issue":"3","key":"10.1016\/j.jcta.2017.09.009_br0240","first-page":"447","article-title":"Polyn\u00f4mes de Schubert","volume":"295","author":"Lascoux","year":"1982","journal-title":"C. R. Acad. Sci. Paris S\u00e9r. I Math."},{"issue":"2\u20133","key":"10.1016\/j.jcta.2017.09.009_br0250","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1007\/BF00398147","article-title":"Schubert polynomials and the Littlewood\u2013Richardson rule","volume":"10","author":"Lascoux","year":"1985","journal-title":"Lett. Math. Phys."},{"issue":"2","key":"10.1016\/j.jcta.2017.09.009_br0260","doi-asserted-by":"crossref","DOI":"10.37236\/1285","article-title":"Treillis et bases des groupes de Coxeter","volume":"3","author":"Lascoux","year":"1996","journal-title":"Electron. J. Combin."},{"issue":"3","key":"10.1016\/j.jcta.2017.09.009_br0230","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1023\/B:JACO.0000048515.00922.47","article-title":"A unified approach to combinatorial formulas for Schubert polynomials","volume":"20","author":"Lenart","year":"2004","journal-title":"J. Algebraic Combin."},{"issue":"4","key":"10.1016\/j.jcta.2017.09.009_br0270","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1007\/s000140050071","article-title":"Schubert polynomials and Bott\u2013Samelson varieties","volume":"73","author":"Magyar","year":"1998","journal-title":"Comment. Math. Helv."},{"key":"10.1016\/j.jcta.2017.09.009_br0280","series-title":"Symmetric Functions, Schubert Polynomials, and Degeneracy Loci","volume":"vol. 3","author":"Manivel","year":"2001"},{"key":"10.1016\/j.jcta.2017.09.009_br0290","series-title":"Combinatorial Commutative Algebra","volume":"vol. 227","author":"Miller","year":"2004"},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0300","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1090\/S0002-9947-2010-05163-3","article-title":"Presenting the cohomology of a Schubert variety","volume":"363","author":"Reiner","year":"2011","journal-title":"Trans. Amer. Math. Soc."},{"key":"10.1016\/j.jcta.2017.09.009_br0310","author":"Weigandt"},{"issue":"1","key":"10.1016\/j.jcta.2017.09.009_br0320","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1006\/jcta.1998.2931","article-title":"Diagram rules for the generation of Schubert polynomials","volume":"86","author":"Winkel","year":"1999","journal-title":"J. Combin. Theory Ser. A"},{"key":"10.1016\/j.jcta.2017.09.009_br0330","article-title":"A derivation of Kohnert's algorithm from Monk's rule","volume":"48","author":"Winkel","year":"2003","journal-title":"S\u00e9m. Lothar. Combin."}],"container-title":["Journal of Combinatorial Theory, Series A"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097316517301334?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097316517301334?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T01:30:10Z","timestamp":1643679010000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0097316517301334"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,2]]},"references-count":33,"alternative-id":["S0097316517301334"],"URL":"https:\/\/doi.org\/10.1016\/j.jcta.2017.09.009","relation":{},"ISSN":["0097-3165"],"issn-type":[{"value":"0097-3165","type":"print"}],"subject":[],"published":{"date-parts":[[2018,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The Prism tableau model for Schubert polynomials","name":"articletitle","label":"Article Title"},{"value":"Journal of Combinatorial Theory, Series A","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcta.2017.09.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc.","name":"copyright","label":"Copyright"}]}}