{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T02:48:26Z","timestamp":1719888506769},"reference-count":87,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100013441","name":"Institute of Mathematical Sciences","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100013441","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2022A1515010426"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11971502"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100015956","name":"Special Project for Research and Development in Key areas of Guangdong Province","doi-asserted-by":"publisher","award":["2021B0101190003"],"id":[{"id":"10.13039\/501100015956","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002402","name":"Sun Yat-sen University","doi-asserted-by":"publisher","award":["2020B1212060032"],"id":[{"id":"10.13039\/501100002402","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100019318","name":"Guangdong Province Key Laboratory of Computational Science","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100019318","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002630","name":"Ewha Womans University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002630","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2022M713639"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002642","name":"Korea University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002642","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.jcp.2022.111444","type":"journal-article","created":{"date-parts":[[2022,7,5]],"date-time":"2022-07-05T15:02:12Z","timestamp":1657033332000},"page":"111444","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Efficient and practical phase-field method for the incompressible multi-component fluids on 3D surfaces with arbitrary shapes"],"prefix":"10.1016","volume":"467","author":[{"given":"Zhijun","family":"Tan","sequence":"first","affiliation":[]},{"given":"Jingwen","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Junxiang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2022.111444_br0010","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1002\/fld.2611","article-title":"Benchmark computations of diffuse interface models for two-dimensional bubble dynamics","volume":"69","author":"Aland","year":"2012","journal-title":"Int. J. Numer. Methods Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0020","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.75.056309","article-title":"Phase-field simulations for drops and bubbles","volume":"75","author":"Borcia","year":"2007","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2022.111444_br0030","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1017\/jfm.2019.664","article-title":"Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants","volume":"879","author":"Zhu","year":"2019","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2022.111444_br0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2020.113123","article-title":"Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface","volume":"367","author":"Sun","year":"2020","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0050","doi-asserted-by":"crossref","DOI":"10.1063\/1.4944058","article-title":"Double emulsion formation through hierarchical flow-focusing microchannel","volume":"28","author":"Azarmanesh","year":"2016","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0060","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.ces.2016.02.036","article-title":"Numerical study of double emulsion formation in microchannels by a ternary Lattice Boltzmann method","volume":"146","author":"Fu","year":"2016","journal-title":"Chem. Eng. Sci."},{"issue":"3","key":"10.1016\/j.jcp.2022.111444_br0070","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1175\/2008JAS2798.1","article-title":"Formation of jets and equatorial superrotation on Jupiter","volume":"66","author":"Schneider","year":"2009","journal-title":"J. Atmos. Sci."},{"key":"10.1016\/j.jcp.2022.111444_br0080","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.compfluid.2013.06.024","article-title":"Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method","volume":"86","author":"Hong","year":"2013","journal-title":"Comput. Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0090","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.ijmultiphaseflow.2016.09.014","article-title":"A combination of parabolized Navier\u2013Stokes equations and level-set method for stratified two-phase internal flow","volume":"88","author":"Rodr\u00edguez","year":"2017","journal-title":"Int. J. Multiph. Flow"},{"key":"10.1016\/j.jcp.2022.111444_br0100","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.ijheatfluidflow.2015.07.004","article-title":"Level-set simulations of buoyancy-driven motion of single and multiple bubbles","volume":"56","author":"Balcazar","year":"2015","journal-title":"Int. J. Heat Fluid Flow"},{"key":"10.1016\/j.jcp.2022.111444_br0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.cpc.2021.108154","article-title":"A simple augmented IIM for 3D incompressible two-phase Stokes flows with interfaces and singular forces","volume":"270","author":"Wang","year":"2022","journal-title":"Comput. Phys. Commun."},{"key":"10.1016\/j.jcp.2022.111444_br0120","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.compfluid.2018.02.003","article-title":"A simple direct-forcing immersed boundary projection method with prediction-correction for fluid-solid interaction problems","volume":"176","author":"Horng","year":"2018","journal-title":"Comput. Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0130","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.cma.2013.01.009","article-title":"Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows","volume":"257","author":"Li","year":"2013","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110795","article-title":"A consistent and conservative Phase-Field model for thermo-gas-liquid-solid flows including liquid-solid phase change","volume":"449","author":"Huang","year":"2022","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110659","article-title":"An efficient phase-field method for turbulent multiphase flows","volume":"446","author":"Liu","year":"2021","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110166","article-title":"A variational interface-preserving and conservative phase-field method for the surface tension effect in two-phase flows","volume":"433","author":"Mao","year":"2021","journal-title":"J. Comput. Phys."},{"issue":"1","key":"10.1016\/j.jcp.2022.111444_br0170","first-page":"91","article-title":"Numerical simulation of droplet evaporation on a hot surface near Leidenfrost regime using multiphase Lattice Boltzmann method","volume":"312","author":"Karami","year":"2017","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0180","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ijmultiphaseflow.2018.05.004","article-title":"Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios","volume":"107","author":"Mitchell","year":"2018","journal-title":"Int. J. Multiph. Flow"},{"key":"10.1016\/j.jcp.2022.111444_br0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114026","article-title":"Phase-field-lattice Boltzmann method for dendritic growth with melt flow and thermosolutal convection-diffusion","volume":"385","author":"Wang","year":"2021","journal-title":"Comput. Methods Appl. Mech. Eng."},{"issue":"2","key":"10.1016\/j.jcp.2022.111444_br0200","doi-asserted-by":"crossref","first-page":"572","DOI":"10.4208\/cicp.OA-2016-0197","article-title":"A second-order energy stable BDF numerical scheme for the Cahn\u2013Hilliard equation","volume":"23","author":"Yan","year":"2018","journal-title":"Commun. Comput. Phys."},{"issue":"15","key":"10.1016\/j.jcp.2022.111444_br0210","article-title":"An efficient time adaptivity based on chemical potential for surface Cahn\u2013Hilliard equation using finite element approximation","volume":"369","author":"Zhao","year":"2020","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0220","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.89.053320","article-title":"Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows","volume":"89","author":"Liang","year":"2014","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2022.111444_br0230","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1007\/s00707-018-2304-2","article-title":"Mass-conservation-improved phase field methods for turbulent multiphase flow simulation","volume":"230","author":"Soligo","year":"2019","journal-title":"Acta Mech."},{"key":"10.1016\/j.jcp.2022.111444_br0240","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1051\/m2an\/2021056","article-title":"Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn\u2013Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity","volume":"55","author":"Chen","year":"2021","journal-title":"ESAIM: M2AN"},{"key":"10.1016\/j.jcp.2022.111444_br0250","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1016\/j.apm.2020.02.022","article-title":"Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities","volume":"83","author":"Zhu","year":"2020","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.jcp.2022.111444_br0260","doi-asserted-by":"crossref","first-page":"489","DOI":"10.4310\/CMS.2016.v14.n2.a8","article-title":"An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn\u2013Hilliard equation","volume":"14","author":"Guo","year":"2016","journal-title":"Commun. Math. Sci."},{"key":"10.1016\/j.jcp.2022.111444_br0270","doi-asserted-by":"crossref","first-page":"1867","DOI":"10.1093\/imanum\/drv065","article-title":"Stability and convergence of a second order mixed finite element method for the Cahn\u2013Hilliard equation","volume":"36","author":"Diegel","year":"2016","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.jcp.2022.111444_br0280","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1007\/s10915-016-0228-3","article-title":"A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn\u2013Hilliard equation and its solution by the homogeneous linear iteration method","volume":"69","author":"Cheng","year":"2016","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0290","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1016\/j.cam.2018.05.039","article-title":"An energy stable fourth order finite difference scheme for the Cahn\u2013Hilliard equation","volume":"362","author":"Cheng","year":"2019","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jcp.2022.111444_br0300","doi-asserted-by":"crossref","first-page":"2231","DOI":"10.1090\/mcom3052","article-title":"Convergence analysis of a fully discrete finite difference scheme for Cahn\u2013Hilliard\u2013Hele\u2013Shaw equation","volume":"85","author":"Chen","year":"2016","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0310","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1007\/s00211-016-0813-2","article-title":"Error analysis of a mixed finite element method for a Cahn\u2013Hilliard\u2013Hele\u2013Shaw system","volume":"135","author":"Liu","year":"2017","journal-title":"Numer. Math."},{"key":"10.1016\/j.jcp.2022.111444_br0320","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1007\/s00211-017-0887-5","article-title":"Convergence analysis and error estimates for a second order accurate finite element method for the Cahn\u2013Hilliard\u2013Navier\u2013Stokes system","volume":"135","author":"Diegel","year":"2017","journal-title":"Numer. Math."},{"key":"10.1016\/j.jcp.2022.111444_br0330","first-page":"149","article-title":"A second order energy stable scheme for the Cahn\u2013Hilliard\u2013Hele\u2013Shaw equation","volume":"24","author":"Chen","year":"2019","journal-title":"Discrete Contin. Dyn. Syst., Ser. B"},{"key":"10.1016\/j.jcp.2022.111444_br0340","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.93.013308","article-title":"Lattice Boltzmann modeling of three-phase incompressible flows","volume":"93","author":"Liang","year":"2016","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2022.111444_br0350","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.apm.2019.03.009","article-title":"Lattice Boltzmann modeling of wall-bounded ternary fluid flows","volume":"73","author":"Liang","year":"2019","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.jcp.2022.111444_br0360","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.97.033312","article-title":"Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods","volume":"97","author":"Haghani-Hassan-Abadi","year":"2018","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2022.111444_br0370","doi-asserted-by":"crossref","first-page":"620","DOI":"10.1016\/j.jcp.2017.01.025","article-title":"Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios","volume":"334","author":"Fakhari","year":"2017","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0380","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110342","article-title":"Efficient and energy stable scheme for the hydrodynamically coupled three components Cahn\u2013Hilliard phase-field model using the stabilized-Invariant Energy Quadratization (S-IEQ) Approach","volume":"438","author":"Yang","year":"2021","journal-title":"J. Comput. Phys."},{"issue":"37\u201340","key":"10.1016\/j.jcp.2022.111444_br0390","doi-asserted-by":"crossref","first-page":"3105","DOI":"10.1016\/j.cma.2009.05.008","article-title":"A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows","volume":"198","author":"Kim","year":"2009","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0400","doi-asserted-by":"crossref","first-page":"4787","DOI":"10.1016\/j.physa.2008.03.023","article-title":"A second-order accurate non-linear difference scheme for the N-component Cahn\u2013Hilliard system","volume":"387","author":"Lee","year":"2008","journal-title":"Physica A"},{"issue":"3","key":"10.1016\/j.jcp.2022.111444_br0410","doi-asserted-by":"crossref","first-page":"613","DOI":"10.4208\/cicp.301110.040811a","article-title":"Phase-field models for multi-component fluid flow","volume":"12","author":"Kim","year":"2012","journal-title":"Commun. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0420","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.jcp.2015.12.054","article-title":"Diffuse interface simulation of ternary fluids in contact with solid","volume":"309","author":"Zhang","year":"2016","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0430","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jcp.2016.07.017","article-title":"Multi-component Cahn\u2013Hilliard system with different boundary conditions in complex domains","volume":"323","author":"Li","year":"2016","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0440","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.cnsns.2019.02.009","article-title":"A practical and efficient numerical method for the Cahn\u2013Hilliard equation in complex domains","volume":"73","author":"Jeong","year":"2019","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.jcp.2022.111444_br0450","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2020.105276","article-title":"An unconditionally stable second-order accurate method for systems of Cahn\u2013Hilliard equations","volume":"87","author":"Yang","year":"2020","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.jcp.2022.111444_br0460","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2021.113778","article-title":"First- and second-order unconditionally stable direct discretization methods for multi-component Cahn\u2013Hilliard system on surfaces","volume":"401","author":"Li","year":"2022","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jcp.2022.111444_br0470","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/s10915-020-01276-z","article-title":"Energy stable numerical schemes for ternary Cahn\u2013Hilliard system","volume":"84","author":"Chen","year":"2020","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0480","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1007\/s10915-021-01508-w","article-title":"An energy stable finite element scheme for the three-component Cahn\u2013Hilliard-type model for macromolecular microsphere composite hydrogels","volume":"87","author":"Yuan","year":"2021","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0490","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110451","article-title":"A positivity-preserving, energy stable scheme for a ternary Cahn\u2013Hilliard system with the singular interfacial parameters","volume":"442","author":"Dong","year":"2021","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0500","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1016\/j.physa.2011.11.032","article-title":"A practically unconditionally gradient stable scheme for the N-component Cahn\u2013Hilliard system","volume":"391","author":"Lee","year":"2012","journal-title":"Physica A"},{"key":"10.1016\/j.jcp.2022.111444_br0510","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.jcp.2017.07.017","article-title":"Fluid-structure interaction involving dynamic wetting: 2D modeling and simulations","volume":"348","author":"Liu","year":"2017","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0520","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109709","article-title":"A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis","volume":"420","author":"Li","year":"2020","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0530","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109403","article-title":"A practical finite difference scheme for the Navier\u2013Stokes equation on curved surfaces in R3","volume":"411","author":"Yang","year":"2020","journal-title":"J. Comput. Phys."},{"issue":"1","key":"10.1016\/j.jcp.2022.111444_br0540","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.jcp.2016.02.028","article-title":"Discrete exterior calculus discretization of incompressible Navier\u2013Stokes equations over surface simplicial meshes","volume":"312","author":"Mohamed","year":"2016","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0550","doi-asserted-by":"crossref","DOI":"10.1063\/1.5005142","article-title":"Solving the incompressible surface Navier\u2013Stokes equation by surface finite elements","volume":"30","author":"Reuther","year":"2018","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0560","doi-asserted-by":"crossref","DOI":"10.1016\/j.cpc.2020.107408","article-title":"Divergence-free radial kernel for surface Stokes equations based on the surface Helmholtz decomposition","volume":"256","author":"Li","year":"2020","journal-title":"Comput. Phys. Commun."},{"key":"10.1016\/j.jcp.2022.111444_br0570","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2020.113382","article-title":"A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3D space","volume":"372","author":"Yang","year":"2020","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0580","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.113987","article-title":"A second-order accurate, unconditionally energy-stable numerical scheme for binary fluid flows on arbitrarily curved surfaces","volume":"384","author":"Xia","year":"2021","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0590","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114167","article-title":"A decoupled, stable, and linear FEM for a phase-field model of variable density two-phase incompressible surface flow","volume":"387","author":"Palzhanov","year":"2021","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0600","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114450","article-title":"Modeling and numerical simulation of surfactant systems with incompressible fluid flows on surfaces","volume":"390","author":"Sun","year":"2022","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0610","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.jcp.2017.07.003","article-title":"Level-set simulations of soluble surfactant driven flows","volume":"348","author":"de Langavant","year":"2017","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0620","doi-asserted-by":"crossref","first-page":"1943","DOI":"10.1016\/j.jcp.2007.10.009","article-title":"A simple embedding method for solving partial differential equations on surfaces","volume":"227","author":"Ruuth","year":"2008","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0630","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.jcp.2018.12.031","article-title":"A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces","volume":"381","author":"Petras","year":"2019","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0640","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.cma.2016.04.022","article-title":"A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces","volume":"307","author":"Lee","year":"2016","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0650","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/0021-9991(67)90037-X","article-title":"A numerical method for solving incompressible viscous flow problems","volume":"2","author":"Chorin","year":"1967","journal-title":"J. Comput. Phys."},{"issue":"4","key":"10.1016\/j.jcp.2022.111444_br0660","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1142\/S0218202521500184","article-title":"Efficient, second-order in time, and energy stable scheme for a new hydrodynamically coupled three components volume-conserved Allen\u2013Cahn phase-field model","volume":"31","author":"Yang","year":"2021","journal-title":"Math. Models Methods Appl. Sci."},{"key":"10.1016\/j.jcp.2022.111444_br0670","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110342","article-title":"Efficient and energy stable scheme for the hydrodynamically coupled three components Cahn\u2013Hilliard phase-field model using the stabilized-Invariant Energy Quadratization (S-IEQ) Approach","volume":"438","author":"Yang","year":"2021","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0680","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/s10915-005-9012-5","article-title":"An improvement of a recent Eulerian method for solving PDEs on general geometries","volume":"29","author":"Greer","year":"2006","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2022.111444_br0690","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.physa.2017.02.014","article-title":"Numerical simulation of the zebra pattern formation on a three-dimensional model","volume":"475","author":"Jeong","year":"2017","journal-title":"Physica A"},{"issue":"12","key":"10.1016\/j.jcp.2022.111444_br0700","doi-asserted-by":"crossref","first-page":"2182","DOI":"10.1063\/1.1761178","article-title":"Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface","volume":"8","author":"Harlow","year":"1965","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0710","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatmasstransfer.2019.118677","article-title":"Efficient monolithic projection method with staggered time discretization for natural convection problems","volume":"144","author":"Pan","year":"2019","journal-title":"Int. J. Heat Mass Transf."},{"key":"10.1016\/j.jcp.2022.111444_br0720","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.camwa.2021.01.004","article-title":"Efficient monolithic projection-based method for chemotaxis-driven bioconvection problems","volume":"84","author":"Pan","year":"2021","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2022.111444_br0730","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/0021-9991(89)90222-2","article-title":"Efficient implementation of essentially non-oscillatory shock capturing schemes II","volume":"83","author":"Shu","year":"1989","journal-title":"J. Comput. Phys."},{"issue":"2","key":"10.1016\/j.jcp.2022.111444_br0740","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1142\/S0219876205000442","article-title":"An augmented projection method for the incompressible Navier\u2013Stokes equations in arbitrary domains","volume":"2","author":"Kim","year":"2005","journal-title":"Int. J. Comput. Methods"},{"key":"10.1016\/j.jcp.2022.111444_br0750","doi-asserted-by":"crossref","first-page":"412","DOI":"10.4208\/cicp.OA-2018-0202","article-title":"A conservative numerical method for the Cahn\u2013Hilliard equation with generalized mobilities on curved surfaces in three-dimensional space","volume":"27","author":"Jeong","year":"2020","journal-title":"Commun. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0760","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.ijengsci.2014.06.004","article-title":"A conservative Allen\u2013Cahn equation with a space-time dependent Lagrange multiplier","volume":"84","author":"Kim","year":"2014","journal-title":"Int. J. Eng. Sci."},{"key":"10.1016\/j.jcp.2022.111444_br0770","doi-asserted-by":"crossref","first-page":"1791","DOI":"10.1016\/j.physa.2009.01.026","article-title":"An unconditionally gradient stable numerical method for solving the Allen\u2013Cahn equation","volume":"388","author":"Choi","year":"2009","journal-title":"Physica A"},{"key":"10.1016\/j.jcp.2022.111444_br0780","doi-asserted-by":"crossref","first-page":"1042","DOI":"10.1016\/j.camwa.2018.10.028","article-title":"An unconditionally stable compact fourth-order finite difference scheme for three dimensional Allen\u2013Cahn equation","volume":"77","author":"Long","year":"2019","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2022.111444_br0800","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/7090186","article-title":"Efficient 3D volume reconstruction from a point cloud using a phase-field method","volume":"2018","author":"Jeong","year":"2018","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.jcp.2022.111444_br0810","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1006\/jcph.1994.1155","article-title":"A level set approach for computing solutions to incompressible two-phase flow","volume":"114","author":"Sussman","year":"1994","journal-title":"J. Comput. Phys."},{"issue":"4","key":"10.1016\/j.jcp.2022.111444_br0820","first-page":"845","article-title":"Uniformly distributed circular porous pattern generation on surface for 3D printing","volume":"13","author":"Yoon","year":"2020","journal-title":"Numer. Math., Theory Methods Appl."},{"key":"10.1016\/j.jcp.2022.111444_br0830","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.euromechflu.2014.08.001","article-title":"Two-dimensional Kelvin\u2013Helmholtz instabilities of multi-component fluids","volume":"49","author":"Lee","year":"2015","journal-title":"Eur. J. Mech. B, Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0840","doi-asserted-by":"crossref","first-page":"1466","DOI":"10.1016\/j.camwa.2013.08.021","article-title":"Numerical simulation of the three-dimensional Rayleigh\u2013Taylor instability","volume":"66","author":"Lee","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2022.111444_br0850","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.apm.2018.12.017","article-title":"Efficient energy-stable schemes for the hydrodynamics coupled phase-field model","volume":"70","author":"Zhu","year":"2019","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.jcp.2022.111444_br0860","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.jcp.2019.04.069","article-title":"A coupled phase field framework for solving incompressible two-phase flows","volume":"392","author":"Chiu","year":"2019","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2022.111444_br0870","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.euromechflu.2013.06.004","article-title":"Buoyancy-driven mixing of multi-component fluids in two-dimensional tilted channels","volume":"42","author":"Lee","year":"2013","journal-title":"Eur. J. Mech. B, Fluids"},{"key":"10.1016\/j.jcp.2022.111444_br0880","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.compfluid.2018.08.023","article-title":"Multi-phase-field modeling using a conservative Allen\u2013Cahn equation for multiphase flow","volume":"178","author":"Aihara","year":"2019","journal-title":"Comput. Fluids"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002199912200506X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002199912200506X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,27]],"date-time":"2022-12-27T16:55:44Z","timestamp":1672160144000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002199912200506X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":87,"alternative-id":["S002199912200506X"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2022.111444","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Efficient and practical phase-field method for the incompressible multi-component fluids on 3D surfaces with arbitrary shapes","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2022.111444","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"111444"}}