{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T14:19:41Z","timestamp":1742393981202,"version":"3.37.3"},"reference-count":83,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,18]],"date-time":"2022-05-18T00:00:00Z","timestamp":1652832000000},"content-version":"am","delay-in-days":259,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100000006","name":"Office of Naval Research","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000006","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.jcp.2021.110412","type":"journal-article","created":{"date-parts":[[2021,5,12]],"date-time":"2021-05-12T01:54:49Z","timestamp":1620784489000},"page":"110412","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["A data-driven, physics-informed framework for forecasting the spatiotemporal evolution of chaotic dynamics with nonlinearities modeled as exogenous forcings"],"prefix":"10.1016","volume":"440","author":[{"given":"M.A.","family":"Khodkar","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9425-8085","authenticated-orcid":false,"given":"Pedram","family":"Hassanzadeh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2021.110412_br0010","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1175\/1520-0469(1963)020<0130:DNF>2.0.CO;2","article-title":"Deterministic nonperiodic flow","volume":"20","author":"Lorenz","year":"1963","journal-title":"J. Atmos. Sci."},{"year":"2015","series-title":"Time Series Analysis: Forecasting and Control","author":"Box","key":"10.1016\/j.jcp.2021.110412_br0020"},{"key":"10.1016\/j.jcp.2021.110412_br0030","doi-asserted-by":"crossref","first-page":"1","DOI":"10.5194\/wes-1-1-2016","article-title":"Long-term research challenges in wind energy - a research agenda by the European academy of wind energy","volume":"1","author":"Van Kuik","year":"2016","journal-title":"Wind Energ. Sci."},{"year":"2017","series-title":"Machine Learning Control-Taming Nonlinear Dynamics and Turbulence","author":"Duriez","key":"10.1016\/j.jcp.2021.110412_br0040"},{"key":"10.1016\/j.jcp.2021.110412_br0050","doi-asserted-by":"crossref","first-page":"920","DOI":"10.1002\/cpa.21401","article-title":"Challenges in climate science and contemporary applied mathematics","volume":"65","author":"Majda","year":"2012","journal-title":"Commun. Pure Appl. Math."},{"key":"10.1016\/j.jcp.2021.110412_br0060","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1038\/nature14956","article-title":"The quiet revolution of numerical weather prediction","volume":"525","author":"Bauer","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.jcp.2021.110412_br0070","doi-asserted-by":"crossref","first-page":"644","DOI":"10.3390\/e20090644","article-title":"Model error, information barriers, state estimation and prediction in complex multiscale systems","volume":"20","author":"Majda","year":"2018","journal-title":"Entropy"},{"key":"10.1016\/j.jcp.2021.110412_br0080","doi-asserted-by":"crossref","DOI":"10.1126\/sciadv.1701533","article-title":"A variational approach to probing extreme events in turbulent dynamical systems","volume":"3","author":"Farazmand","year":"2017","journal-title":"Sci. Adv."},{"key":"10.1016\/j.jcp.2021.110412_br0090","doi-asserted-by":"crossref","DOI":"10.1029\/2019MS001958","article-title":"Analog forecasting of extreme-causing weather patterns using deep learning","volume":"12","author":"Chattopadhyay","year":"2020","journal-title":"J. Adv. Model. Earth Syst."},{"key":"10.1016\/j.jcp.2021.110412_br0100","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1175\/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2","article-title":"The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations","volume":"80","author":"Wunsch","year":"1999","journal-title":"Bull. Am. Meteorol. Soc."},{"year":"2007","series-title":"Empirical Methods in Short-Term Climate Prediction","author":"Van den Dool","key":"10.1016\/j.jcp.2021.110412_br0110"},{"key":"10.1016\/j.jcp.2021.110412_br0120","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1007\/s00382-014-2181-x","article-title":"The skill of atmospheric linear inverse models in hindcasting the Madden\u2013Julian oscillation","volume":"44","author":"Cavanaugh","year":"2015","journal-title":"Clim. Dyn."},{"key":"10.1016\/j.jcp.2021.110412_br0130","doi-asserted-by":"crossref","first-page":"3441","DOI":"10.1175\/JAS-D-16-0099.1","article-title":"The linear response function of an idealized atmosphere. Part II: implications for the practical use of the fluctuation\u2013dissipation theorem and the role of operator's nonnormality","volume":"73","author":"Hassanzadeh","year":"2016","journal-title":"J. Atmos. Sci."},{"key":"10.1016\/j.jcp.2021.110412_br0140","article-title":"Data-driven spectral decomposition and forecasting of ergodic dynamical systems","author":"Giannakis","year":"2017","journal-title":"Appl. Comput. Harmon. Anal."},{"key":"10.1016\/j.jcp.2021.110412_br0150","doi-asserted-by":"crossref","first-page":"1855","DOI":"10.1007\/s00382-016-3177-5","article-title":"Data-driven prediction strategies for low-frequency patterns of North Pacific climate variability","volume":"48","author":"Comeau","year":"2017","journal-title":"Clim. Dyn."},{"key":"10.1016\/j.jcp.2021.110412_br0160","doi-asserted-by":"crossref","DOI":"10.1017\/jfm.2018.586","article-title":"Data-driven reduced modelling of turbulent Rayleigh-B\u00e9nard convection using DMD-enhanced fluctuation-dissipation theorem","volume":"852","author":"Khodkar","year":"2018","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2021.110412_br0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-57897-9","article-title":"Predicting clustered weather patterns: a test case for applications of convolutional neural networks to spatio-temporal climate data","volume":"10","author":"Chattopadhyay","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.jcp.2021.110412_br0180","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1002\/sta4.160","article-title":"An ensemble quadratic echo state network for non-linear spatio-temporal forecasting","volume":"6","author":"McDermott","year":"2017","journal-title":"Stat"},{"author":"Yu","key":"10.1016\/j.jcp.2021.110412_br0190"},{"key":"10.1016\/j.jcp.2021.110412_br0200","doi-asserted-by":"crossref","DOI":"10.1098\/rspa.2017.0844","article-title":"Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks","volume":"474","author":"Vlachas","year":"2018","journal-title":"Proc. R. Soc. A"},{"key":"10.1016\/j.jcp.2021.110412_br0210","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.120.024102","article-title":"Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach","volume":"120","author":"Pathak","year":"2018","journal-title":"Phys. Rev. Lett."},{"author":"Mohan","key":"10.1016\/j.jcp.2021.110412_br0220"},{"key":"10.1016\/j.jcp.2021.110412_br0230","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.jcp.2018.10.045","article-title":"Physics-informed neural networks: a deep learning framework for learning forward and inverse problems involving nonlinear partial differential equations","volume":"378","author":"Raissi","year":"2019","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2021.110412_br0240","doi-asserted-by":"crossref","DOI":"10.1002\/env.2553","article-title":"Deep state networks with uncertainty quantification for spatio-temporal forecasting","volume":"30","author":"McDermott","year":"2019","journal-title":"Environmetrics"},{"key":"10.1016\/j.jcp.2021.110412_br0250","doi-asserted-by":"crossref","first-page":"373","DOI":"10.5194\/npg-27-373-2020","article-title":"Data-driven prediction of a multi-scale Lorenz 96 chaotic system using machine learning methods: reservoir computing, artificial neural network, and long short-term memory network","volume":"27","author":"Chattopadhyay","year":"2020","journal-title":"Nonlinear Process. Geophys."},{"key":"10.1016\/j.jcp.2021.110412_br0260","doi-asserted-by":"crossref","DOI":"10.1063\/5.0020526","article-title":"Deep neural networks for nonlinear model order reduction of unsteady flows","volume":"32","author":"Eivazi","year":"2020","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2021.110412_br0270","first-page":"1","article-title":"Towards physically consistent data-driven weather forecasting: integrating data assimilation with equivariance-preserving spatial transformers in a case study with ERA5","author":"Chattopadhyay","year":"2021","journal-title":"Geosci. Model Dev. Discuss."},{"key":"10.1016\/j.jcp.2021.110412_br0280","doi-asserted-by":"crossref","DOI":"10.1098\/rsta.2020.0093","article-title":"Physics-informed machine learning: case studies for weather and climate modelling","volume":"379","author":"Kashinath","year":"2021","journal-title":"Philos. Trans. R. Soc. A"},{"key":"10.1016\/j.jcp.2021.110412_br0290","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1007\/s11071-005-2824-x","article-title":"Spectral properties of dynamical systems, model reduction and decompositions","volume":"41","author":"Mezi\u0107","year":"2005","journal-title":"Nonlinear Dyn."},{"key":"10.1016\/j.jcp.2021.110412_br0300","doi-asserted-by":"crossref","DOI":"10.1146\/annurev-fluid-011212-140652","article-title":"Analysis of fluid flows via spectral properties of the Koopman operator","volume":"45","author":"Mezi\u0107","year":"2013","journal-title":"Annu. Rev. Fluid Mech."},{"key":"10.1016\/j.jcp.2021.110412_br0310","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1017\/S0022112010001217","article-title":"Dynamic mode decomposition of numerical and experimental data","volume":"656","author":"Schmid","year":"2010","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2021.110412_br0320","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1017\/S0022112009992059","article-title":"Spectral analysis of nonlinear flows","volume":"641","author":"Rowley","year":"2009","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2021.110412_br0330","doi-asserted-by":"crossref","first-page":"391","DOI":"10.3934\/jcd.2014.1.391","article-title":"On dynamic mode decomposition: theory and applications","volume":"1","author":"Tu","year":"2014","journal-title":"J. Comput. Dyn."},{"key":"10.1016\/j.jcp.2021.110412_br0340","doi-asserted-by":"crossref","DOI":"10.1007\/s00332-015-9258-5","article-title":"A data\u2013driven approximation of the Koopman operator: extending dynamic mode decomposition","volume":"25","author":"Williams","year":"2015","journal-title":"J. Nonlinear Sci."},{"key":"10.1016\/j.jcp.2021.110412_br0350","doi-asserted-by":"crossref","first-page":"2096","DOI":"10.1137\/17M1125236","article-title":"Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator","volume":"16","author":"Arbabi","year":"2017","journal-title":"SIAM J. Appl. Dyn. Syst."},{"key":"10.1016\/j.jcp.2021.110412_br0360","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevFluids.2.124402","article-title":"Study of dynamics in post-transient flows using Koopman mode decomposition","volume":"2","author":"Arbabi","year":"2017","journal-title":"Phys. Rev. Fluids"},{"key":"10.1016\/j.jcp.2021.110412_br0370","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1007\/s00332-017-9423-0","article-title":"On convergence of extended dynamic mode decomposition to the Koopman operator","volume":"28","author":"Korda","year":"2018","journal-title":"J. Nonlinear Sci."},{"key":"10.1016\/j.jcp.2021.110412_br0380","doi-asserted-by":"crossref","first-page":"599","DOI":"10.1016\/j.acha.2018.08.002","article-title":"Data-driven spectral analysis of the Koopman operator","volume":"48","author":"Korda","year":"2020","journal-title":"Appl. Comput. Harmon. Anal."},{"key":"10.1016\/j.jcp.2021.110412_br0390","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1146\/annurev-fluid-010816-060042","article-title":"Model reduction for flow analysis and control","volume":"49","author":"Rowley","year":"2017","journal-title":"Annu. Rev. Fluid Mech."},{"key":"10.1016\/j.jcp.2021.110412_br0400","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1007\/BFb0091924","article-title":"Detecting strange attractors in turbulence","volume":"898","author":"Takens","year":"1981","journal-title":"Lect. Notes Math."},{"key":"10.1016\/j.jcp.2021.110412_br0410","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1038\/s41467-017-00030-8","article-title":"Chaos as an intermittently forced linear system","volume":"8","author":"Brunton","year":"2017","journal-title":"Nat. Commun."},{"key":"10.1016\/j.jcp.2021.110412_br0420","doi-asserted-by":"crossref","first-page":"3932","DOI":"10.1073\/pnas.1517384113","article-title":"Discovering governing equations from data by sparse identification of nonlinear dynamical systems","volume":"113","author":"Brunton","year":"2016","journal-title":"Proc. Natl. Acad. Sci."},{"author":"Arbabi","key":"10.1016\/j.jcp.2021.110412_br0430"},{"key":"10.1016\/j.jcp.2021.110412_br0440","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.automatica.2018.03.046","article-title":"Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control","volume":"93","author":"Korda","year":"2018","journal-title":"Automatica"},{"key":"10.1016\/j.jcp.2021.110412_br0450","first-page":"3932","article-title":"Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability","volume":"113","author":"Giannakis","year":"2012","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.jcp.2021.110412_br0460","series-title":"Developments in Control Theory: Towards Glocal Control","first-page":"79","article-title":"Matrix pencils in time and frequency domain system identification","volume":"vol. 76","author":"Ionita","year":"2012"},{"key":"10.1016\/j.jcp.2021.110412_br0470","doi-asserted-by":"crossref","first-page":"B889","DOI":"10.1137\/15M1041432","article-title":"Model reduction of bilinear systems in the Loewner framework","volume":"38","author":"Antoulas","year":"2016","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2021.110412_br0480","doi-asserted-by":"crossref","first-page":"A2152","DOI":"10.1137\/16M1094750","article-title":"Data-driven reduced model construction with time-domain Loewner models","volume":"39","author":"Peherstorfer","year":"2017","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2021.110412_br0490","series-title":"Active Flow and Combustion Control 2018","first-page":"255","article-title":"On the Loewner framework for model reduction of Burgers' equation","author":"Antoulas","year":"2019"},{"year":"2019","series-title":"Data-Driven and Interpolatory Model Reduction","author":"Gugercin","key":"10.1016\/j.jcp.2021.110412_br0500"},{"author":"Pogorelyuk","key":"10.1016\/j.jcp.2021.110412_br0510"},{"key":"10.1016\/j.jcp.2021.110412_br0520","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1137\/130932715","article-title":"A survey of projection-based model reduction methods for parametric dynamical systems","volume":"57","author":"Benner","year":"2015","journal-title":"SIAM Rev."},{"key":"10.1016\/j.jcp.2021.110412_br0530","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.cma.2016.03.025","article-title":"Data-driven operator inference for nonintrusive projection-based model reduction","volume":"306","author":"Peherstorfer","year":"2016","journal-title":"Comput. Methods Appl. Mech. Eng."},{"year":"1989","series-title":"Generalized Linear Models","author":"McCullagh","key":"10.1016\/j.jcp.2021.110412_br0540"},{"key":"10.1016\/j.jcp.2021.110412_br0550","doi-asserted-by":"crossref","first-page":"1067","DOI":"10.1175\/1520-0442(1993)006<1067:PONSST>2.0.CO;2","article-title":"Prediction of ni\u00f1o 3 sea surface temperatures using linear inverse modeling","volume":"6","author":"Penland","year":"1993","journal-title":"J. Climate"},{"key":"10.1016\/j.jcp.2021.110412_br0560","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1175\/1520-0442(1998)011<0483:POTASS>2.0.CO;2","article-title":"Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling","volume":"11","author":"Penland","year":"1998","journal-title":"J. Climate"},{"key":"10.1016\/j.jcp.2021.110412_br0570","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1175\/2007JCLI1849.1","article-title":"Forecasting Pacific SSTs: linear inverse model predictions of the PDO","volume":"21","author":"Alexander","year":"2008","journal-title":"J. Climate"},{"key":"10.1016\/j.jcp.2021.110412_br0580","doi-asserted-by":"crossref","first-page":"4404","DOI":"10.1175\/JCLI3544.1","article-title":"Multilevel regression modeling of nonlinear processes: derivation and applications to climatic variability","volume":"18","author":"Kravtsov","year":"2005","journal-title":"J. Climate"},{"key":"10.1016\/j.jcp.2021.110412_br0590","doi-asserted-by":"crossref","first-page":"4425","DOI":"10.1175\/JCLI3567.1","article-title":"A hierarchy of data-based ENSO models","volume":"18","author":"Kondrashov","year":"2005","journal-title":"J. Climate"},{"key":"10.1016\/j.jcp.2021.110412_br0600","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.jcp.2017.11.039","article-title":"Hidden physics models: machine learning of nonlinear partial differential equations","volume":"357","author":"Raissi","year":"2018","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2021.110412_br0610","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1016\/j.compfluid.2018.07.021","article-title":"Projection-based model reduction: formulations for physics-based machine learning","volume":"179","author":"Swischuk","year":"2019","journal-title":"Comput. Fluids"},{"key":"10.1016\/j.jcp.2021.110412_br0620","doi-asserted-by":"crossref","DOI":"10.1016\/j.physd.2020.132401","article-title":"Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems","volume":"406","author":"Qian","year":"2020","journal-title":"Phys. D, Nonlinear Phenom."},{"key":"10.1016\/j.jcp.2021.110412_br0630","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1137\/15M1013857","article-title":"Dynamic mode decomposition with control","volume":"15","author":"Proctor","year":"2016","journal-title":"SIAM J. Appl. Dyn. Syst."},{"key":"10.1016\/j.jcp.2021.110412_br0640","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1017\/S002211201000176X","article-title":"A critical-layer framework for turbulent pipe flow","volume":"658","author":"McKeon","year":"2010","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2021.110412_br0650","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/0167-2789(85)90011-9","article-title":"Determining Lyapunov exponents from a time series","volume":"16","author":"Wolf","year":"1985","journal-title":"Physica D"},{"key":"10.1016\/j.jcp.2021.110412_br0660","doi-asserted-by":"crossref","DOI":"10.1073\/pnas.1313065110","article-title":"Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems","volume":"110","author":"Sapsis","year":"2013","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.jcp.2021.110412_br0670","series-title":"Frontiers in Applied Dynamical Systems: Reviews and Tutorials","article-title":"Introduction to turbulent dynamical systems for complex systems","author":"Majda","year":"2016"},{"key":"10.1016\/j.jcp.2021.110412_br0680","doi-asserted-by":"crossref","first-page":"4609","DOI":"10.1175\/JAS-D-16-0192.1","article-title":"Low-dimensional reduced-order models for statistical response and uncertainty quantification: two-layer baroclinic turbulence","volume":"73","author":"Qi","year":"2016","journal-title":"J. Atmos. Sci."},{"key":"10.1016\/j.jcp.2021.110412_br0690","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1137\/070705623","article-title":"On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain","volume":"9","author":"Cvitanovi\u0107","year":"2010","journal-title":"SIAM J. Appl. Dyn. Syst."},{"key":"10.1016\/j.jcp.2021.110412_br0700","article-title":"Chaotic Behavior of Multi-Dimensional Difference Equations","volume":"vol. 730","author":"Kaplan","year":"1978"},{"key":"10.1016\/j.jcp.2021.110412_br0710","series-title":"Predictability of Weather and Climate","first-page":"40","article-title":"Predictability - a problem partly solved","author":"Lorenz","year":"2006"},{"key":"10.1016\/j.jcp.2021.110412_br0720","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/0021-9991(82)90058-4","article-title":"High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method","volume":"48","author":"Ghia","year":"1982","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2021.110412_br0730","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/0021-9991(83)90129-8","article-title":"Driven cavity flows by efficient numerical techniques","volume":"49","author":"Schreiber","year":"1983","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2021.110412_br0740","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1002\/fld.442","article-title":"A novel fully implicit finite volume method applied to the lid-driven cavity problem\u2014part I: high Reynolds number flow calculations","volume":"42","author":"Sahin","year":"2003","journal-title":"Int. J. Numer. Methods Fluids"},{"key":"10.1016\/j.jcp.2021.110412_br0750","doi-asserted-by":"crossref","DOI":"10.1063\/5.0004393","article-title":"Data-driven modeling of the wake behind a wind turbine array","volume":"12","author":"Ali","year":"2020","journal-title":"J. Renew. Sustain. Energy"},{"key":"10.1016\/j.jcp.2021.110412_br0760","series-title":"Data Assimilation","volume":"vol. 214","author":"Law","year":"2015"},{"key":"10.1016\/j.jcp.2021.110412_br0770","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocs.2020.101171","article-title":"Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model","volume":"44","author":"Brajard","year":"2020","journal-title":"J. Comput. Sci."},{"author":"Yang","key":"10.1016\/j.jcp.2021.110412_br0780"},{"key":"10.1016\/j.jcp.2021.110412_br0790","doi-asserted-by":"crossref","DOI":"10.1007\/s00348-016-2127-7","article-title":"Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition","volume":"57","author":"Dawson","year":"2016","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.jcp.2021.110412_br0800","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1007\/s00162-017-0432-2","article-title":"De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy dataset","volume":"31","author":"Hemati","year":"2017","journal-title":"Theor. Comput. Fluid Dyn."},{"key":"10.1016\/j.jcp.2021.110412_br0810","first-page":"1333","article-title":"Fundamental limitations of ad hoc linear and quadratic multi-level regression models for physical systems","volume":"17","author":"Majda","year":"2012","journal-title":"Discrete Contin. Dyn. Syst., Ser. B"},{"key":"10.1016\/j.jcp.2021.110412_br0820","first-page":"558","article-title":"Linearly recurrent autoencoder networks for learning dynamics","volume":"18","author":"Otto","year":"2019","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2021.110412_br0830","series-title":"Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control","first-page":"3","article-title":"Singular Value Decomposition (SVD)","author":"Brunton","year":"2019"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999121003077?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999121003077?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,27]],"date-time":"2022-12-27T16:20:29Z","timestamp":1672158029000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999121003077"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":83,"alternative-id":["S0021999121003077"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2021.110412","relation":{},"ISSN":["0021-9991"],"issn-type":[{"type":"print","value":"0021-9991"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A data-driven, physics-informed framework for forecasting the spatiotemporal evolution of chaotic dynamics with nonlinearities modeled as exogenous forcings","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2021.110412","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110412"}}