{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T04:31:32Z","timestamp":1729139492930,"version":"3.27.0"},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100013076","name":"National Major Science and Technology Projects of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013076","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012164","name":"National High-tech Research and Development Program","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012164","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2021,2]]},"DOI":"10.1016\/j.jcp.2020.109933","type":"journal-article","created":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T14:34:53Z","timestamp":1604241293000},"page":"109933","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["A decoupled and stabilized lattice Boltzmann method for multiphase flow with large density ratio at high Reynolds and Weber numbers"],"prefix":"10.1016","volume":"426","author":[{"given":"Yongyong","family":"Wu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4731-3082","authenticated-orcid":false,"given":"Nan","family":"Gui","sequence":"additional","affiliation":[]},{"given":"Xingtuan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jiyuan","family":"Tu","sequence":"additional","affiliation":[]},{"given":"Shengyao","family":"Jiang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2001","series-title":"The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond","author":"Succi","key":"10.1016\/j.jcp.2020.109933_br0010"},{"key":"10.1016\/j.jcp.2020.109933_br0020","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.pecs.2015.10.001","article-title":"Lattice Boltzmann methods for multiphase flow and phase-change heat transfer","volume":"52","author":"Li","year":"2016","journal-title":"Prog. Energy Combust. Sci."},{"key":"10.1016\/j.jcp.2020.109933_br0030","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1103\/PhysRevLett.56.1505","article-title":"Lattice-gas automata for the Navier-Stokes equation","volume":"56","author":"Frisch","year":"1986","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.jcp.2020.109933_br0040","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1103\/PhysRevLett.31.276","article-title":"Time evolution of a two-dimensional classical lattice system","volume":"31","author":"Hardy","year":"1973","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.jcp.2020.109933_br0050","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1103\/PhysRev.94.511","article-title":"A model for collision processes in gases 1. Small amplitude processes in charged and neutral one-component systems","volume":"94","author":"Bhatnagar","year":"1954","journal-title":"Phys. Rev."},{"issue":"6","key":"10.1016\/j.jcp.2020.109933_br0060","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1209\/0295-5075\/17\/6\/001","article-title":"Lattice bgk models for Navier-Stokes equation","volume":"17","author":"Qian","year":"1992","journal-title":"Europhys. Lett."},{"key":"10.1016\/j.jcp.2020.109933_br0070","series-title":"18th International Symposium, Rarefied Gas Dynamics","first-page":"450","article-title":"Generalized lattice-Boltzmann equations","author":"D'Humieres","year":"1992"},{"key":"10.1016\/j.jcp.2020.109933_br0080","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1103\/PhysRevE.61.6546","article-title":"Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability","volume":"61","author":"Lallemand","year":"2000","journal-title":"Phys. Rev. E"},{"issue":"2","key":"10.1016\/j.jcp.2020.109933_br0090","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1209\/epl\/i1999-00370-1","article-title":"Perfect entropy functions of the lattice Boltzmann method","volume":"47","author":"Karlin","year":"1999","journal-title":"Europhys. Lett."},{"key":"10.1016\/j.jcp.2020.109933_br0100","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.114.174502","article-title":"Entropic lattice Boltzmann method for multiphase flows","volume":"114","author":"Mazloomi","year":"2015","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.jcp.2020.109933_br0110","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.jcp.2014.09.035","article-title":"Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio","volume":"280","author":"Wang","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109933_br0120","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.73.066705","article-title":"Cascaded digital lattice Boltzmann automata for high Reynolds number flow","volume":"73","author":"Geier","year":"2006","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0130","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.94.053313","article-title":"Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers","volume":"94","author":"Lycett-Brown","year":"2016","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0140","doi-asserted-by":"crossref","first-page":"4320","DOI":"10.1103\/PhysRevA.43.4320","article-title":"Lattice Boltzmann model of immiscible fluids","volume":"43","author":"Gunstensen","year":"1991","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.jcp.2020.109933_br0150","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1103\/PhysRevLett.75.830","article-title":"Lattice Boltzmann simulation of nonideal fluids","volume":"75","author":"Swift","year":"1995","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.jcp.2020.109933_br0160","doi-asserted-by":"crossref","first-page":"2941","DOI":"10.1103\/PhysRevE.49.2941","article-title":"Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation","volume":"49","author":"Shan","year":"1994","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0170","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1103\/PhysRevE.47.1815","article-title":"Lattice Boltzmann model for simulating flows with multiple phases and components","volume":"47","author":"Shan","year":"1993","journal-title":"Phys. Rev. E"},{"issue":"2","key":"10.1016\/j.jcp.2020.109933_br0180","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1006\/jcph.1999.6257","article-title":"A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability","volume":"152","author":"He","year":"1999","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109933_br0190","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.jcp.2015.08.049","article-title":"An improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number","volume":"302","author":"Wang","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109933_br0630","doi-asserted-by":"crossref","DOI":"10.1007\/s42241-020-0058-5","article-title":"Liutex-based analysis of drag force and vortex in two-phase flow past 2-D square obstacle using LBM on GPU","volume":"32","author":"Cheng","year":"2020","journal-title":"J. Hydrodyn."},{"key":"10.1016\/j.jcp.2020.109933_br0200","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.97.033309","article-title":"Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows","volume":"97","author":"Liang","year":"2018","journal-title":"Phys. Rev. E"},{"issue":"9","key":"10.1016\/j.jcp.2020.109933_br0210","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1002\/fld.3995","article-title":"A hybrid phase field multiple relaxation time lattice Boltzmann method for the incompressible multiphase flow with large density contrast","volume":"77","author":"Shao","year":"2015","journal-title":"Int. J. Numer. Methods Fluids"},{"key":"10.1016\/j.jcp.2020.109933_br0220","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.jcp.2017.03.062","article-title":"A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades","volume":"341","author":"Fakhari","year":"2017","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109933_br0230","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.98.063314","article-title":"Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces","volume":"98","author":"Chen","year":"2018","journal-title":"Phys. Rev. E"},{"issue":"1","key":"10.1016\/j.jcp.2020.109933_br0240","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1146\/annurev.fluid.38.050304.092144","article-title":"Drop impact dynamics: splashing, spreading, receding, bouncing","volume":"38","author":"Yarin","year":"2006","journal-title":"Annu. Rev. Fluid Mech."},{"issue":"6","key":"10.1016\/j.jcp.2020.109933_br0250","doi-asserted-by":"crossref","first-page":"1650","DOI":"10.1063\/1.1572815","article-title":"Droplet splashing on a thin liquid film","volume":"15","author":"Josserand","year":"2003","journal-title":"Phys. Fluids"},{"issue":"1792","key":"10.1016\/j.jcp.2020.109933_br0260","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1098\/rsta.2001.0955","article-title":"Multiple\u2013relaxation\u2013time lattice Boltzmann models in three dimensions","volume":"360","author":"D'Humi\u00e8res","year":"2002","journal-title":"Philos. Trans. R. Soc., Math. Phys. Eng. Sci."},{"issue":"1","key":"10.1016\/j.jcp.2020.109933_br0640","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s42757-019-0002-5","article-title":"Thermal hydraulic considerations of nuclear reactor systems: past, present and future challenges","volume":"1","author":"Yeoh","year":"2019","journal-title":"Exp. & Computat. Multiphase Flow"},{"issue":"2","key":"10.1016\/j.jcp.2020.109933_br0650","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1007\/s42757-019-0009-y","article-title":"One-dimensional drift-flux correlations for two-phase flow in medium-size channels","volume":"1","author":"Hibiki","year":"2019","journal-title":"Exp. & Computat. Multiphase Flow"},{"key":"10.1016\/j.jcp.2020.109933_br0270","doi-asserted-by":"crossref","first-page":"025701","DOI":"10.1103\/PhysRevE.82.025701","article-title":"Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method","volume":"82","author":"Kr\u00fcger","year":"2010","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0280","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.79.046704","article-title":"Shear stress in lattice Boltzmann simulations","volume":"79","author":"Kr\u00fcger","year":"2009","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0290","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.jnnfm.2016.03.010","article-title":"A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-Newtonian power-law fluid flows","volume":"235","author":"Wang","year":"2016","journal-title":"J. Non-Newton. Fluid Mech."},{"key":"10.1016\/j.jcp.2020.109933_br0300","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.71.036701","article-title":"Multiple-relaxation-time lattice-Boltzmann model for multiphase flow","volume":"71","author":"McCracken","year":"2005","journal-title":"Phys. Rev. E"},{"issue":"7","key":"10.1016\/j.jcp.2020.109933_br0310","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1080\/10618560802253100","article-title":"Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer","volume":"22","author":"Guo","year":"2008","journal-title":"Int. J. Comput. Fluid Dyn."},{"key":"10.1016\/j.jcp.2020.109933_br0320","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.78.026705","article-title":"Multiple-relaxation-time model for the correct thermohydrodynamic equations","volume":"78","author":"Zheng","year":"2008","journal-title":"Phys. Rev. E"},{"issue":"6 Pt 2","key":"10.1016\/j.jcp.2020.109933_br0330","article-title":"Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models","volume":"77","author":"Shan","year":"2008","journal-title":"Phys. Rev. E"},{"year":"2017","series-title":"Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change","author":"Li","key":"10.1016\/j.jcp.2020.109933_br0340"},{"key":"10.1016\/j.jcp.2020.109933_br0350","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.ijheatmasstransfer.2013.03.058","article-title":"Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling","volume":"64","author":"Gong","year":"2013","journal-title":"Int. J. Heat Mass Transf."},{"issue":"17","key":"10.1016\/j.jcp.2020.109933_br0360","doi-asserted-by":"crossref","first-page":"4923","DOI":"10.1016\/j.ijheatmasstransfer.2012.04.037","article-title":"A lattice Boltzmann method for simulation of liquid\u2013vapor phase-change heat transfer","volume":"55","author":"Gong","year":"2012","journal-title":"Int. J. Heat Mass Transf."},{"key":"10.1016\/j.jcp.2020.109933_br0370","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.ijheatmasstransfer.2018.04.021","article-title":"Improved stability strategies for pseudo-potential models of lattice Boltzmann simulation of multiphase flow","volume":"125","author":"Wu","year":"2018","journal-title":"Int. J. Heat Mass Transf."},{"issue":"5","key":"10.1016\/j.jcp.2020.109933_br0380","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.87.053301","article-title":"Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model","volume":"87","author":"Li","year":"2013","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0390","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.jcp.2016.09.030","article-title":"Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow","volume":"327","author":"Huang","year":"2016","journal-title":"J. Comput. Phys."},{"issue":"5","key":"10.1016\/j.jcp.2020.109933_br0400","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.88.053307","article-title":"Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows","volume":"88","author":"Li","year":"2013","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.jcp.2020.109933_br0410","doi-asserted-by":"crossref","DOI":"10.1063\/1.4729611","article-title":"Numerical estimates for the bulk viscosity of ideal gases","volume":"24","author":"Cramer","year":"2012","journal-title":"Phys. Fluids"},{"year":"1959","series-title":"Fluid Mechanics","author":"Landau","key":"10.1016\/j.jcp.2020.109933_br0420"},{"key":"10.1016\/j.jcp.2020.109933_br0430","first-page":"31","article-title":"Add-ons for lattice Boltzmann methods: regularization, filtering and limiters","volume":"vol. 3","author":"Brownlee","year":"2013"},{"issue":"7","key":"10.1016\/j.jcp.2020.109933_br0440","doi-asserted-by":"crossref","first-page":"1699","DOI":"10.1016\/j.camwa.2018.07.022","article-title":"Fourth-order analysis of force terms in multiphase pseudopotential lattice Boltzmann model","volume":"76","author":"Wu","year":"2018","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2020.109933_br0450","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.91.023305","article-title":"Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios","volume":"91","author":"Lycett-Brown","year":"2015","journal-title":"Phys. Rev. E"},{"issue":"8","key":"10.1016\/j.jcp.2020.109933_br0460","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1016\/j.compfluid.2005.08.008","article-title":"Consistent initial conditions for lattice Boltzmann simulations","volume":"35","author":"Mei","year":"2006","journal-title":"Comput. Fluids"},{"issue":"4","key":"10.1016\/j.jcp.2020.109933_br0470","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1088\/1009-1963\/11\/4\/310","article-title":"Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method","volume":"11","author":"Zhao-Li","year":"2002","journal-title":"Chin. Phys."},{"issue":"1","key":"10.1016\/j.jcp.2020.109933_br0480","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1007\/s10404-013-1202-0","article-title":"Numerical simulation of the collision of two microdroplets with a pseudopotential multiple-relaxation-time lattice Boltzmann model","volume":"16","author":"Monaco","year":"2014","journal-title":"Microfluid. Nanofluid."},{"issue":"2","key":"10.1016\/j.jcp.2020.109933_br0490","doi-asserted-by":"crossref","DOI":"10.1063\/1.4942017","article-title":"Simulation of binary droplet collisions with the entropic lattice Boltzmann method","volume":"28","author":"Mazloomi Moqaddam","year":"2016","journal-title":"Phys. Fluids"},{"issue":"8","key":"10.1016\/j.jcp.2020.109933_br0500","doi-asserted-by":"crossref","DOI":"10.1063\/1.2009527","article-title":"Numerical simulation of binary liquid droplet collision","volume":"17","author":"Pan","year":"2005","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2020.109933_br0510","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1016\/j.cej.2019.03.188","article-title":"Numerical study of binary droplets collision in the main collision regimes","volume":"370","author":"Amani","year":"2019","journal-title":"Chem. Eng. J."},{"key":"10.1016\/j.jcp.2020.109933_br0520","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1017\/jfm.2015.725","article-title":"Numerical study of head-on droplet collisions at high Weber numbers","volume":"789","author":"Liu","year":"2016","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2020.109933_br0530","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1017\/jfm.2014.558","article-title":"Study on high-Weber-number droplet collision by a parallel, adaptive interface-tracking method","volume":"759","author":"Kuan","year":"2014","journal-title":"J. Fluid Mech."},{"issue":"3 Pt 2","key":"10.1016\/j.jcp.2020.109933_br0540","article-title":"Binary droplet collision at high Weber number","volume":"80","author":"Pan","year":"2009","journal-title":"Phys. Rev. E, Stat. Nonlinear Soft Matter Phys."},{"key":"10.1016\/j.jcp.2020.109933_br0550","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.compfluid.2018.03.082","article-title":"3D lattice Boltzmann simulation for a saturated liquid droplet at low Ohnesorge numbers impact and breakup on a solid surface surrounded by a saturated vapor","volume":"168","author":"Xiong","year":"2018","journal-title":"Comput. Fluids"},{"issue":"4","key":"10.1016\/j.jcp.2020.109933_br0560","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1007\/s10404-007-0248-2","article-title":"Adherence and bouncing of liquid droplets impacting on dry surfaces","volume":"5","author":"Caviezel","year":"2008","journal-title":"Microfluid. Nanofluid."},{"issue":"2","key":"10.1016\/j.jcp.2020.109933_br0570","doi-asserted-by":"crossref","DOI":"10.1063\/1.4940995","article-title":"Phase field simulation of a droplet impacting a solid surface","volume":"28","author":"Zhang","year":"2016","journal-title":"Phys. Fluids"},{"issue":"1","key":"10.1016\/j.jcp.2020.109933_br0580","doi-asserted-by":"crossref","first-page":"243","DOI":"10.18869\/acadpub.jafm.73.238.26440","article-title":"A computational study of high-speed microdroplet impact onto a smooth solid surface","volume":"10","author":"Feng","year":"2017","journal-title":"J. Appl. Fluid Mech."},{"issue":"11","key":"10.1016\/j.jcp.2020.109933_br0590","doi-asserted-by":"crossref","first-page":"5120","DOI":"10.1039\/c1sm05336a","article-title":"Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle","volume":"7","author":"Yokoi","year":"2011","journal-title":"Soft Matter"},{"issue":"12","key":"10.1016\/j.jcp.2020.109933_br0600","doi-asserted-by":"crossref","DOI":"10.1063\/1.5005990","article-title":"Effect of surface roughness on droplet splashing","volume":"29","author":"Hao","year":"2017","journal-title":"Phys. Fluids"},{"issue":"5","key":"10.1016\/j.jcp.2020.109933_br0610","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.90.053301","article-title":"Contact angles in the pseudopotential lattice Boltzmann modeling of wetting","volume":"90","author":"Li","year":"2014","journal-title":"Phys. Rev. E"},{"issue":"2","key":"10.1016\/j.jcp.2020.109933_br0620","first-page":"155","article-title":"Outcomes from a drop impact on solid surfaces","volume":"11","author":"Rioboo","year":"2001","journal-title":"At. Sprays"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999120307075?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999120307075?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T20:27:32Z","timestamp":1729110452000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999120307075"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2]]},"references-count":65,"alternative-id":["S0021999120307075"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2020.109933","relation":{},"ISSN":["0021-9991"],"issn-type":[{"type":"print","value":"0021-9991"}],"subject":[],"published":{"date-parts":[[2021,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A decoupled and stabilized lattice Boltzmann method for multiphase flow with large density ratio at high Reynolds and Weber numbers","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2020.109933","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109933"}}