{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T17:56:02Z","timestamp":1720806962053},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003151","name":"FRQNT","doi-asserted-by":"publisher","award":["B2X"],"id":[{"id":"10.13039\/501100003151","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003833","name":"Hydro-Qu\u00e9bec","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003833","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000038","name":"NSERC","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]},{"name":"French Research Federation for Fusion Studies"},{"DOI":"10.13039\/501100000038","name":"NSERC","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.jcp.2020.109781","type":"journal-article","created":{"date-parts":[[2020,8,26]],"date-time":"2020-08-26T15:29:52Z","timestamp":1598455792000},"page":"109781","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["A Characteristic Mapping method for the two-dimensional incompressible Euler equations"],"prefix":"10.1016","volume":"424","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0542-020X","authenticated-orcid":false,"given":"Xi-Yuan","family":"Yin","sequence":"first","affiliation":[]},{"given":"Olivier","family":"Mercier","sequence":"additional","affiliation":[]},{"given":"Badal","family":"Yadav","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Schneider","sequence":"additional","affiliation":[]},{"given":"Jean-Christophe","family":"Nave","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0010","doi-asserted-by":"crossref","first-page":"A1663","DOI":"10.1137\/18M1234424","article-title":"The Characteristic Mapping method for the linear advection of arbitrary sets","volume":"42","author":"Mercier","year":"2020","journal-title":"SIAM J. Sci. Comput."},{"issue":"10","key":"10.1016\/j.jcp.2020.109781_br0020","doi-asserted-by":"crossref","first-page":"3802","DOI":"10.1016\/j.jcp.2010.01.029","article-title":"A Gradient-Augmented Level Set method with an optimally local, coherent advection scheme","volume":"229","author":"Nave","year":"2010","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109781_br0030","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.jcp.2015.11.045","article-title":"The Cauchy-Lagrangian method for numerical analysis of Euler flow","volume":"306","author":"Podvigina","year":"2016","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109781_br0040","series-title":"Soviet Physics Doklady, vol. 7","first-page":"789","article-title":"The flow of a perfect, incompressible liquid through a given region","author":"Yudovich","year":"1963"},{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0050","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.4007\/annals.2014.180.3.9","article-title":"Small scale creation for solutions of the incompressible two-dimensional Euler equation","volume":"180","author":"Kiselev","year":"2014","journal-title":"Ann. Math."},{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0060","first-page":"755","article-title":"Infinite superlinear growth of the gradient for the two-dimensional Euler equation","volume":"23","author":"Denisov","year":"2009","journal-title":"Dyn. Syst."},{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0070","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1080\/14685248.2013.771838","article-title":"Mathematics and turbulence: where do we stand?","volume":"14","author":"Bardos","year":"2013","journal-title":"J. Turbul."},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0080","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.84.016301","article-title":"Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations","volume":"84","author":"Ray","year":"2011","journal-title":"Phys. Rev. E"},{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0090","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.87.033017","article-title":"Wavelet methods to eliminate resonances in the Galerkin-truncated Burgers and Euler equations","volume":"87","author":"Pereira","year":"2013","journal-title":"Phys. Rev. E"},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0100","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0021-9991(66)90014-3","article-title":"An Eulerian differencing method for unsteady compressible flow problems","volume":"1","author":"Gentry","year":"1966","journal-title":"J. Comput. Phys."},{"issue":"12","key":"10.1016\/j.jcp.2020.109781_br0110","doi-asserted-by":"crossref","first-page":"2182","DOI":"10.1063\/1.1761178","article-title":"Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface","volume":"8","author":"Harlow","year":"1965","journal-title":"Phys. Fluids"},{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0120","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1093\/mnras\/181.3.375","article-title":"Smoothed particle hydrodynamics: theory and application to non-spherical stars","volume":"181","author":"Gingold","year":"1977","journal-title":"Mon. Not. R. Astron. Soc."},{"issue":"8","key":"10.1016\/j.jcp.2020.109781_br0130","doi-asserted-by":"crossref","first-page":"1703","DOI":"10.1088\/0034-4885\/68\/8\/R01","article-title":"Smoothed particle hydrodynamics","volume":"68","author":"Monaghan","year":"2005","journal-title":"Rep. Prog. Phys."},{"issue":"4","key":"10.1016\/j.jcp.2020.109781_br0140","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1017\/S0022112073002016","article-title":"Numerical study of slightly viscous flow","volume":"57","author":"Chorin","year":"1973","journal-title":"J. Fluid Mech."},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0150","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10915-014-9928-8","article-title":"A fully Lagrangian advection scheme","volume":"64","author":"Bowman","year":"2015","journal-title":"J. Sci. Comput."},{"issue":"3","key":"10.1016\/j.jcp.2020.109781_br0160","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/0021-9991(74)90051-5","article-title":"An arbitrary Lagrangian-Eulerian computing method for all flow speeds","volume":"14","author":"Hirt","year":"1974","journal-title":"J. Comput. Phys."},{"issue":"1\u20133","key":"10.1016\/j.jcp.2020.109781_br0170","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1016\/0045-7825(82)90128-1","article-title":"An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions","volume":"33","author":"Donea","year":"1982","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2020.109781_br0180","series-title":"Level Set Methods and Dynamic Implicit Surfaces, vol. 153","author":"Osher","year":"2006"},{"issue":"4","key":"10.1016\/j.jcp.2020.109781_br0190","doi-asserted-by":"crossref","first-page":"427","DOI":"10.4310\/MAA.2005.v12.n4.a4","article-title":"A level set formulation for the 3D incompressible Euler equations","volume":"12","author":"Deng","year":"2005","journal-title":"Methods Appl. Anal."},{"key":"10.1016\/j.jcp.2020.109781_br0200","series-title":"Siggraph, vol. 99","first-page":"121","article-title":"Stable fluids","author":"Stam","year":"1999"},{"key":"10.1016\/j.jcp.2020.109781_br0210","series-title":"Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques","first-page":"23","article-title":"Practical animation of liquids","author":"Foster","year":"2001"},{"issue":"4","key":"10.1016\/j.jcp.2020.109781_br0220","first-page":"1229","article-title":"Jet schemes for advection problems","volume":"17","author":"Seibold","year":"2012","journal-title":"Discrete Contin. Dyn. Syst., Ser. B"},{"issue":"6","key":"10.1016\/j.jcp.2020.109781_br0230","doi-asserted-by":"crossref","first-page":"1547","DOI":"10.1016\/j.cpc.2013.02.002","article-title":"A new method for the level set equation using a hierarchical-gradient truncation and remapping technique","volume":"184","author":"Kohno","year":"2013","journal-title":"Comput. Phys. Commun."},{"issue":"5","key":"10.1016\/j.jcp.2020.109781_br0240","doi-asserted-by":"crossref","first-page":"S173","DOI":"10.1137\/15M1026043","article-title":"Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations","volume":"38","author":"Deiterding","year":"2016","journal-title":"SIAM J. Sci. Comput."},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0250","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1007\/s10915-015-0014-7","article-title":"Adaptive Gradient-Augmented Level Set method with multiresolution error estimation","volume":"66","author":"Kolomenskiy","year":"2016","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2020.109781_br0260","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.jcp.2015.03.024","article-title":"A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive Quad\/Octrees","volume":"292","author":"Guittet","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109781_br0270","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.jcp.2019.04.024","article-title":"Sharp numerical simulation of incompressible two-phase flows","volume":"391","author":"Theillard","year":"2019","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109781_br0280","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1016\/j.aim.2015.05.019","article-title":"Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models","volume":"285","author":"Constantin","year":"2015","journal-title":"Adv. Math."},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0290","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1007\/BF01474610","article-title":"Un th\u00e9or\u00e8me sur l'existence du mouvement plan d'un fluide parfait, homog\u00e8ne, incompressible, pendant un temps infiniment long","volume":"37","author":"Wolibner","year":"1933","journal-title":"Math. Z."},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0300","doi-asserted-by":"crossref","first-page":"319","DOI":"10.5802\/aif.233","article-title":"Sur la g\u00e9om\u00e9trie diff\u00e9rentielle des groupes de lie de dimension infinie et ses applications \u00e0 l'hydrodynamique des fluides parfaits","volume":"16","author":"Arnold","year":"1966","journal-title":"Ann. Inst. Fourier"},{"issue":"1","key":"10.1016\/j.jcp.2020.109781_br0310","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/s00205-002-0207-8","article-title":"The anisotropic Lagrangian averaged Euler and Navier-Stokes equations","volume":"166","author":"Marsden","year":"2003","journal-title":"Arch. Ration. Mech. Anal."},{"issue":"2","key":"10.1016\/j.jcp.2020.109781_br0320","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1063\/1.1533069","article-title":"Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence","volume":"15","author":"Mohseni","year":"2003","journal-title":"Phys. Fluids"},{"issue":"1784","key":"10.1016\/j.jcp.2020.109781_br0330","doi-asserted-by":"crossref","first-page":"1449","DOI":"10.1098\/rsta.2001.0852","article-title":"Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-\u03b1) equations on bounded domains","volume":"359","author":"Marsden","year":"2001","journal-title":"Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci."},{"key":"10.1016\/j.jcp.2020.109781_br0340","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1081\/PDE-100001756","article-title":"The Vortex Blob method as a second-grade non-Newtonian fluid","volume":"26","author":"Oliver","year":"2001","journal-title":"Commun. Partial Differ. Equ."},{"key":"10.1016\/j.jcp.2020.109781_br0350","series-title":"Advances in Turbulence XII","first-page":"685","article-title":"Casimir cascades in two-dimensional turbulence","author":"Bowman","year":"2009"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999120305556?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999120305556?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,10]],"date-time":"2022-11-10T03:00:17Z","timestamp":1668049217000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999120305556"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":35,"alternative-id":["S0021999120305556"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2020.109781","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Characteristic Mapping method for the two-dimensional incompressible Euler equations","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2020.109781","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109781"}}