{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:38:40Z","timestamp":1740105520062,"version":"3.37.3"},"reference-count":22,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"National Foreign Experts Project of China","award":["G20190001349"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11801030","11861131004"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1016\/j.jcp.2020.109697","type":"journal-article","created":{"date-parts":[[2020,7,23]],"date-time":"2020-07-23T15:26:55Z","timestamp":1595518015000},"page":"109697","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Boundary treatment of high order Runge-Kutta methods for hyperbolic conservation laws"],"prefix":"10.1016","volume":"421","author":[{"given":"Weifeng","family":"Zhao","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0527-7431","authenticated-orcid":false,"given":"Juntao","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Steven J.","family":"Ruuth","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.jcp.2020.109697_br0010","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/0021-9991(88)90177-5","article-title":"Efficient implementation of essentially nonoscillatory shockcapturing schemes","volume":"77","author":"Shu","year":"1988","journal-title":"J. Comput. Phys."},{"issue":"6","key":"10.1016\/j.jcp.2020.109697_br0020","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1137\/0909073","article-title":"Total-variation-diminishing time discretizations","volume":"9","author":"Shu","year":"1988","journal-title":"SIAM J. Sci. Stat. Comput."},{"issue":"1","key":"10.1016\/j.jcp.2020.109697_br0030","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1137\/S003614450036757X","article-title":"Strong stability-preserving high-order time discretization methods","volume":"43","author":"Gottlieb","year":"2001","journal-title":"SIAM Rev."},{"author":"Zhao","key":"10.1016\/j.jcp.2020.109697_br0040"},{"issue":"21","key":"10.1016\/j.jcp.2020.109697_br0050","doi-asserted-by":"crossref","first-page":"8144","DOI":"10.1016\/j.jcp.2010.07.014","article-title":"Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws","volume":"229","author":"Tan","year":"2010","journal-title":"J. Comput. Phys."},{"issue":"6","key":"10.1016\/j.jcp.2020.109697_br0060","doi-asserted-by":"crossref","first-page":"2510","DOI":"10.1016\/j.jcp.2011.11.037","article-title":"Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws","volume":"231","author":"Tan","year":"2012","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109697_br0070","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1090\/S0025-5718-98-00913-2","article-title":"Total variation diminishing Runge-Kutta schemes","volume":"67","author":"Gottlieb","year":"1998","journal-title":"Math. Comput."},{"issue":"1\u20134","key":"10.1016\/j.jcp.2020.109697_br0080","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1023\/A:1015156832269","article-title":"Two barriers on strong-stability-preserving time discretization methods","volume":"17","author":"Ruuth","year":"2002","journal-title":"J. Sci. Comput."},{"issue":"2","key":"10.1016\/j.jcp.2020.109697_br0090","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1137\/S0036142901389025","article-title":"A new class of optimal high-order strong-stability-preserving time discretization methods","volume":"40","author":"Spiteri","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"issue":"3","key":"10.1016\/j.jcp.2020.109697_br0100","doi-asserted-by":"crossref","first-page":"974","DOI":"10.1137\/S0036142902419284","article-title":"High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations","volume":"42","author":"Ruuth","year":"2004","journal-title":"SIAM J. Numer. Anal."},{"issue":"253","key":"10.1016\/j.jcp.2020.109697_br0110","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1090\/S0025-5718-05-01772-2","article-title":"Global optimization of explicit strong-stability-preserving Runge-Kutta methods","volume":"75","author":"Ruuth","year":"2005","journal-title":"Math. Comput."},{"issue":"1\u20133","key":"10.1016\/j.jcp.2020.109697_br0120","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1007\/s10915-005-9054-8","article-title":"Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations","volume":"27","author":"Gottlieb","year":"2006","journal-title":"J. Sci. Comput."},{"issue":"6","key":"10.1016\/j.jcp.2020.109697_br0130","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1137\/0916072","article-title":"The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error","volume":"16","author":"Carpenter","year":"1995","journal-title":"SIAM J. Sci. Comput."},{"issue":"3","key":"10.1016\/j.jcp.2020.109697_br0140","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1137\/S1064827595282520","article-title":"On the removal of boundary errors caused by Runge\u2013Kutta integration of nonlinear partial differential equations","volume":"17","author":"Abarbanel","year":"1996","journal-title":"SIAM J. Sci. Comput."},{"issue":"5","key":"10.1016\/j.jcp.2020.109697_br0150","doi-asserted-by":"crossref","first-page":"1255","DOI":"10.1137\/S1064827594273948","article-title":"The correct formulation of intermediate boundary conditions for Runge\u2013Kutta time integration of initial boundary value problems","volume":"18","author":"Pathria","year":"1997","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2020.109697_br0160","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/0021-9991(92)90046-2","article-title":"Boundary conditions for direct simulations of compressible viscous flows","volume":"101","author":"Poinsot","year":"1992","journal-title":"J. Comput. Phys."},{"year":"2017","series-title":"Perturbed Strong Stability Preserving Time-Stepping Methods for Hyperbolic PDEs","author":"Hadjimichael","key":"10.1016\/j.jcp.2020.109697_br0170"},{"key":"10.1016\/j.jcp.2020.109697_br0180","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1006\/jcph.1996.0130","article-title":"Efficient implementation of weighted ENO schemes","volume":"126","author":"Jiang","year":"1996","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109697_br0190","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1006\/jcph.2000.6443","article-title":"Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy","volume":"160","author":"Balsara","year":"2000","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2020.109697_br0200","series-title":"46th AIAA Aerospace Sciences Meeting and Exhibit","article-title":"A robust seventh-order WENO scheme and its applications","author":"Shen","year":"2008"},{"key":"10.1016\/j.jcp.2020.109697_br0210","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/0021-9991(84)90142-6","article-title":"The numerical simulation of two-dimensional fluid flow with strong shocks","volume":"54","author":"Woodward","year":"1984","journal-title":"J. Comput. Phys."},{"author":"Lu","key":"10.1016\/j.jcp.2020.109697_br0220"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002199912030471X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002199912030471X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,9,30]],"date-time":"2020-09-30T09:52:54Z","timestamp":1601459574000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002199912030471X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11]]},"references-count":22,"alternative-id":["S002199912030471X"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2020.109697","relation":{},"ISSN":["0021-9991"],"issn-type":[{"type":"print","value":"0021-9991"}],"subject":[],"published":{"date-parts":[[2020,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Boundary treatment of high order Runge-Kutta methods for hyperbolic conservation laws","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2020.109697","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109697"}}