{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T02:40:49Z","timestamp":1719888049573},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,5,20]],"date-time":"2020-05-20T00:00:00Z","timestamp":1589932800000},"content-version":"am","delay-in-days":262,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100005766","name":"Virginia Space Grant Consortium","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100005766","id-type":"DOI","asserted-by":"publisher"}]},{"name":"US Department of Defense"},{"DOI":"10.13039\/100000183","name":"Army Research Office","doi-asserted-by":"publisher","award":["W911NF-17-0443"],"id":[{"id":"10.13039\/100000183","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1016\/j.jcp.2019.05.006","type":"journal-article","created":{"date-parts":[[2019,5,9]],"date-time":"2019-05-09T17:22:33Z","timestamp":1557422553000},"page":"74-91","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Entropy stable artificial dissipation based on Brenner regularization of the Navier-Stokes equations"],"prefix":"10.1016","volume":"393","author":[{"given":"Johnathon","family":"Upperman","sequence":"first","affiliation":[]},{"given":"Nail K.","family":"Yamaleev","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2019.05.006_br0010","series-title":"Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models","author":"Lions","year":"1998"},{"key":"10.1016\/j.jcp.2019.05.006_br0020","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1080\/03605300600857079","article-title":"On barotropic compressible Navier-Stokes equations","volume":"32","author":"Mellet","year":"2007","journal-title":"Commun. Partial Differ. Equ."},{"issue":"270","key":"10.1016\/j.jcp.2019.05.006_br0030","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1090\/S0025-5718-09-02310-2","article-title":"A convergent finite element-finite volume scheme for the compressible Stokes problem, II. The isentropic case","volume":"79","author":"Eymard","year":"2010","journal-title":"Math. Comput."},{"issue":"3","key":"10.1016\/j.jcp.2019.05.006_br0040","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1093\/imanum\/drq048","article-title":"A convergent mixed method for the Stokes approximation of viscous compressible flow","volume":"32","author":"Karlsen","year":"2012","journal-title":"IMA J. Numer. Anal."},{"issue":"4","key":"10.1016\/j.jcp.2019.05.006_br0050","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1007\/s00211-015-0786-6","article-title":"Convergence of a numerical method for the compressible Navier\u2013Stokes system on general domains","volume":"134","author":"Feireisl","year":"2016","journal-title":"Numer. Math."},{"issue":"3","key":"10.1016\/j.jcp.2019.05.006_br0060","doi-asserted-by":"crossref","first-page":"1484","DOI":"10.1137\/15M1010361","article-title":"A convergent numerical scheme for the compressible Navier-Stokes equations","volume":"54","author":"Sv\u00e4rd","year":"2016","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2019.05.006_br0070","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/0021-9991(83)90136-5","article-title":"High resolution schemes for hyperbolic conservation laws","volume":"49","author":"Harten","year":"1983","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0080","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1017\/S0962492902000156","article-title":"Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems","volume":"12","author":"Tadmor","year":"2003","journal-title":"Acta Numer."},{"issue":"2","key":"10.1016\/j.jcp.2019.05.006_br0090","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/0021-9991(87)90031-3","article-title":"Uniformly high order accurate essentially non-oscillatory schemes III","volume":"71","author":"Harten","year":"1987","journal-title":"J. Comput. Phys."},{"issue":"1","key":"10.1016\/j.jcp.2019.05.006_br0100","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1006\/jcph.1994.1187","article-title":"Weighted essentially non-oscillatory schemes","volume":"115","author":"Liu","year":"1994","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0110","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1006\/jcph.1996.0130","article-title":"Efficient implementation of weighted ENO schemes","volume":"126","author":"Jiang","year":"1996","journal-title":"J. Comput. Phys."},{"issue":"6","key":"10.1016\/j.jcp.2019.05.006_br0120","doi-asserted-by":"crossref","first-page":"2240","DOI":"10.1137\/S0036142901388378","article-title":"Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers","volume":"40","author":"Ferretti","year":"2003","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2019.05.006_br0130","doi-asserted-by":"crossref","first-page":"2211","DOI":"10.1137\/060657911","article-title":"Convergence of Godunov-type schemes for scalar conservation laws under large time steps","volume":"46","author":"Qiu","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2019.05.006_br0140","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1137\/110836961","article-title":"Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws","volume":"50","author":"Fjordholm","year":"2012","journal-title":"SIAM J. Numer. Anal."},{"issue":"8","key":"10.1016\/j.jcp.2019.05.006_br0150","doi-asserted-by":"crossref","first-page":"3025","DOI":"10.1016\/j.jcp.2009.01.011","article-title":"Third-order energy stable WENO scheme","volume":"228","author":"Yamaleev","year":"2009","journal-title":"J. Comput. Phys."},{"issue":"11","key":"10.1016\/j.jcp.2019.05.006_br0160","doi-asserted-by":"crossref","first-page":"4248","DOI":"10.1016\/j.jcp.2009.03.002","article-title":"A systematic methodology for constructing high-order energy stable WENO schemes","volume":"228","author":"Yamaleev","year":"2009","journal-title":"J. Comput. Phys."},{"issue":"10","key":"10.1016\/j.jcp.2019.05.006_br0170","doi-asserted-by":"crossref","first-page":"3727","DOI":"10.1016\/j.jcp.2011.01.043","article-title":"Boundary closures for 4th-order energy stable WENO finite difference schemes","volume":"230","author":"Fisher","year":"2011","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0180","series-title":"Advances in Applied Mathematics, Mathematical Modeling and Computational Science","first-page":"117","article-title":"Boundary closures for sixth-order energy stable weighted essentially non-oscillatory finite-difference schemes","volume":"vol. 66","author":"Carpenter","year":"2013"},{"key":"10.1016\/j.jcp.2019.05.006_br0190","doi-asserted-by":"crossref","first-page":"518","DOI":"10.1016\/j.jcp.2013.06.014","article-title":"High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains","volume":"252","author":"Fisher","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0200","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.jcp.2016.11.039","article-title":"A family of fourth-order entropy stable non-oscillatory spectral collocation schemes for the 1-D Navier-Stokes equations","volume":"331","author":"Yamaleev","year":"2017","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0210","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s10915-006-9105-9","article-title":"Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method","volume":"31","author":"Hou","year":"2007","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2019.05.006_br0220","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/0045-7825(86)90127-1","article-title":"A new finite element formulation for computational fluid dynamics: K. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics","volume":"54","author":"Hughes","year":"1986","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2019.05.006_br0230","series-title":"An Introduction to Recent Developments in Theory and Numerics of Conservation Laws","first-page":"195","article-title":"Numerical methods for gas-dynamics systems on unstructured meshes","volume":"vol. 5","author":"Barth","year":"1999"},{"key":"10.1016\/j.jcp.2019.05.006_br0240","doi-asserted-by":"crossref","first-page":"1810","DOI":"10.1016\/j.jcp.2009.11.010","article-title":"Shock capturing with PDE-based artificial viscosity for DGFEM: Part I, Formulation","volume":"229","author":"Barter","year":"2010","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0250","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1016\/j.cma.2012.08.018","article-title":"Implementation of entropy viscosity method with the discontinuous Galerkin method","volume":"253","author":"Zingan","year":"2013","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2019.05.006_br0260","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.jcp.2013.04.012","article-title":"Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes","volume":"248","author":"Zhu","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0270","series-title":"Sub-Cell Shock Capturing for Discontinuous Glerkin Methods","author":"Persson","year":"2006"},{"key":"10.1016\/j.jcp.2019.05.006_br0280","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.physa.2004.10.034","article-title":"Navier-Stokes revisited","volume":"349","author":"Brenner","year":"2005","journal-title":"Physica A"},{"key":"10.1016\/j.jcp.2019.05.006_br0290","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.ijengsci.2012.01.006","article-title":"Beyond Navier-Stokes","volume":"54","author":"Brenner","year":"2012","journal-title":"Int. J. Eng. Sci."},{"key":"10.1016\/j.jcp.2019.05.006_br0300","series-title":"New Directions in Mathematical Fluid Dynamics","first-page":"153","article-title":"New perspectives in fluid dynamics: mathematical analysis of a model proposed by Howard Brenner","author":"Feireisl","year":"2009"},{"key":"10.1016\/j.jcp.2019.05.006_br0310","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1016\/j.jcp.2007.01.023","article-title":"A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions","volume":"225","author":"Sv\u00e4rd","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0320","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1017\/S0022112007005575","article-title":"The structure of shock waves as a test of Brenner's modifications to the Navier-Stokes equations","volume":"580","author":"Greenshields","year":"2007","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2019.05.006_br0330","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.jcp.2015.02.013","article-title":"Weak solutions and convergent numerical schemes of modified Navier-Stokes equations","volume":"288","author":"Sv\u00e4rd","year":"2015","journal-title":"J. Comput. Phys."},{"issue":"2","key":"10.1016\/j.jcp.2019.05.006_br0340","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1007\/s00205-011-0490-3","article-title":"Weak-strong uniqueness property for the full Navier-Stokes-Fourier system","volume":"204","author":"Feireisl","year":"2012","journal-title":"Arch. Ration. Mech. Anal."},{"key":"10.1016\/j.jcp.2019.05.006_br0350","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/0168-9274(86)90029-2","article-title":"A minimum entropy principle in the gas dynamics equations","volume":"2","author":"Tadmor","year":"1986","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2019.05.006_br0360","series-title":"Multidimensional Hyperbolic Problems and Computations","first-page":"315","article-title":"Richness and the classification of quasilinear hyperbolic systems","volume":"vol. 29","author":"Serre","year":"1991"},{"issue":"3","key":"10.1016\/j.jcp.2019.05.006_br0370","first-page":"521","article-title":"An interesting class of quasilinear systems","volume":"139","author":"Godunov","year":"1961","journal-title":"Dokl. Akad. Nauk SSSR"},{"issue":"2","key":"10.1016\/j.jcp.2019.05.006_br0380","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1137\/120903312","article-title":"Viscous regularization of the Euler equations and entropy principles","volume":"74","author":"Guermond","year":"2014","journal-title":"SIAM J. Appl. Math."},{"key":"10.1016\/j.jcp.2019.05.006_br0390","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/0021-9991(83)90118-3","article-title":"On the symmetric form of systems of conservation laws with entropy","volume":"49","author":"Harten","year":"1983","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0400","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.jcp.2014.02.031","article-title":"Review of summation-by-parts schemes for initial-boundary-value problems","volume":"268","author":"Sv\u00e4rd","year":"2014","journal-title":"J. Comput. Phys."},{"issue":"5","key":"10.1016\/j.jcp.2019.05.006_br0410","doi-asserted-by":"crossref","first-page":"B835","DOI":"10.1137\/130932193","article-title":"Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces","volume":"36","author":"Carpenter","year":"2014","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2019.05.006_br0420","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.jcp.2012.09.026","article-title":"Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions","volume":"234","author":"Fisher","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0430","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1006\/jcph.1994.1057","article-title":"Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes","volume":"111","author":"Carpenter","year":"1994","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0440","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.jcp.2006.02.014","article-title":"On the order of accuracy for difference approximations of initial-boundary value problems","volume":"218","author":"Sv\u00e4rd","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0450","series-title":"Handbook of Numerical Analysis, vol. 17","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1016\/bs.hna.2016.09.014","article-title":"Entropy stable summation-by-parts formulations for compressible computational fluid dynamics","author":"Carpenter","year":"2016"},{"key":"10.1016\/j.jcp.2019.05.006_br0460","doi-asserted-by":"crossref","first-page":"5410","DOI":"10.1016\/j.jcp.2009.04.021","article-title":"Affordable, entropy-consistent Euler flux functions II: entropy production at shocks","volume":"228","author":"Ismail","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2019.05.006_br0470","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1090\/S0025-5718-1989-0979941-6","article-title":"Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions","volume":"53","author":"Szepessy","year":"1989","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2019.05.006_br0480","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/0045-7825(91)90041-4","article-title":"A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations","volume":"89","author":"Shakib","year":"1991","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.jcp.2019.05.006_br0490","doi-asserted-by":"crossref","first-page":"4248","DOI":"10.1016\/j.jcp.2010.11.043","article-title":"Entropy viscosity method for nonlinear conservation laws","volume":"230","author":"Guermond","year":"2011","journal-title":"J. Comput. Phys."},{"issue":"4","key":"10.1016\/j.jcp.2019.05.006_br0500","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1090\/qam\/33711","article-title":"The thickness of a shock wave in air","volume":"7","author":"Puckett","year":"1950","journal-title":"Q. Appl. Math."},{"issue":"3","key":"10.1016\/j.jcp.2019.05.006_br0510","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/S0168-9274(99)00141-5","article-title":"Low-storage, explicit Runge\u2013Kutta schemes for the compressible Navier\u2013Stokes equations","volume":"35","author":"Kennedy","year":"2000","journal-title":"Appl. Numer. Math."}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999119303316?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999119303316?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,11]],"date-time":"2021-04-11T06:04:42Z","timestamp":1618121082000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999119303316"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":51,"alternative-id":["S0021999119303316"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2019.05.006","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2019,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Entropy stable artificial dissipation based on Brenner regularization of the Navier-Stokes equations","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2019.05.006","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}