{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:38:24Z","timestamp":1740105504452,"version":"3.37.3"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,5,1]],"date-time":"2018-05-01T00:00:00Z","timestamp":1525132800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,2,13]],"date-time":"2019-02-13T00:00:00Z","timestamp":1550016000000},"content-version":"am","delay-in-days":288,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"name":"ARO","award":["W911NF-15-1-0226"]},{"DOI":"10.13039\/100000001","name":"NSF","doi-asserted-by":"publisher","award":["DMS-1418750","DMS-1719410"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2018,5]]},"DOI":"10.1016\/j.jcp.2018.01.051","type":"journal-article","created":{"date-parts":[[2018,2,5]],"date-time":"2018-02-05T17:53:52Z","timestamp":1517853232000},"page":"111-135","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":40,"special_numbering":"C","title":["Bound-preserving modified exponential Runge\u2013Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms"],"prefix":"10.1016","volume":"361","author":[{"given":"Juntao","family":"Huang","sequence":"first","affiliation":[]},{"given":"Chi-Wang","family":"Shu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0010","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1006\/jcph.2000.6572","article-title":"The random projection method for hyperbolic conservation laws with stiff reaction terms","volume":"163","author":"Bao","year":"2000","journal-title":"J. Comput. Phys."},{"year":"1994","series-title":"The Numerical Wave Speed for One-Dimensional Scalar Hyperbolic Conservation Laws with Source Terms","author":"Berkenbosch","key":"10.1016\/j.jcp.2018.01.051_br0020"},{"issue":"218","key":"10.1016\/j.jcp.2018.01.051_br0030","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1090\/S0025-5718-97-00817-X","article-title":"On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms","volume":"66","author":"Chalabi","year":"1997","journal-title":"Math. Comput."},{"issue":"4","key":"10.1016\/j.jcp.2018.01.051_br0040","doi-asserted-by":"crossref","first-page":"2008","DOI":"10.1137\/151005798","article-title":"Steady state and sign preserving semi-implicit Runge\u2013Kutta methods for ODEs with stiff damping term","volume":"53","author":"Chertock","year":"2015","journal-title":"SIAM J. Numer. Anal."},{"issue":"6","key":"10.1016\/j.jcp.2018.01.051_br0050","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1002\/fld.4023","article-title":"Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms","volume":"78","author":"Chertock","year":"2015","journal-title":"Int. J. Numer. Methods Fluids"},{"key":"10.1016\/j.jcp.2018.01.051_br0060","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.jcp.2014.10.029","article-title":"High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes","volume":"281","author":"Christlieb","year":"2015","journal-title":"J. Comput. Phys."},{"issue":"190","key":"10.1016\/j.jcp.2018.01.051_br0070","first-page":"545","article-title":"The Runge\u2013Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case","volume":"54","author":"Cockburn","year":"1990","journal-title":"Math. Comput."},{"issue":"186","key":"10.1016\/j.jcp.2018.01.051_br0080","first-page":"411","article-title":"TVB Runge\u2013Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework","volume":"52","author":"Cockburn","year":"1989","journal-title":"Math. Comput."},{"issue":"276","key":"10.1016\/j.jcp.2018.01.051_br0090","doi-asserted-by":"crossref","first-page":"2097","DOI":"10.1090\/S0025-5718-2011-02463-4","article-title":"On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms","volume":"80","author":"Donat","year":"2011","journal-title":"Math. Comput."},{"issue":"8","key":"10.1016\/j.jcp.2018.01.051_br0100","doi-asserted-by":"crossref","first-page":"3971","DOI":"10.1016\/j.jcp.2007.12.005","article-title":"Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws","volume":"227","author":"Dumbser","year":"2008","journal-title":"J. Comput. Phys."},{"issue":"3","key":"10.1016\/j.jcp.2018.01.051_br0110","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1145\/355900.355901","article-title":"Runge\u2013Kutta starters for multistep methods","volume":"6","author":"Gear","year":"1980","journal-title":"ACM Trans. Math. Softw."},{"author":"Gottlieb","key":"10.1016\/j.jcp.2018.01.051_br0120"},{"issue":"221","key":"10.1016\/j.jcp.2018.01.051_br0130","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1090\/S0025-5718-98-00913-2","article-title":"Total variation diminishing Runge\u2013Kutta schemes","volume":"67","author":"Gottlieb","year":"1998","journal-title":"Math. Comput."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0140","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1137\/S003614450036757X","article-title":"Strong stability-preserving high-order time discretization methods","volume":"43","author":"Gottlieb","year":"2001","journal-title":"SIAM Rev."},{"issue":"5","key":"10.1016\/j.jcp.2018.01.051_br0150","doi-asserted-by":"crossref","first-page":"1244","DOI":"10.1137\/0729074","article-title":"Numerical wave propagation in an advection equation with a nonlinear source term","volume":"29","author":"Griffiths","year":"1992","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2018.01.051_br0160","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1017\/S0962492910000048","article-title":"Exponential integrators","volume":"19","author":"Hochbruck","year":"2010","journal-title":"Acta Numer."},{"issue":"2","key":"10.1016\/j.jcp.2018.01.051_br0170","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1002\/num.22089","article-title":"Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws","volume":"33","author":"Huang","year":"2017","journal-title":"Numer. Methods Partial Differ. Equ."},{"issue":"03","key":"10.1016\/j.jcp.2018.01.051_br0180","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1142\/S0218202517500099","article-title":"A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr\u2013Debye model","volume":"27","author":"Huang","year":"2017","journal-title":"Math. Models Methods Appl. Sci."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0190","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1006\/jcph.1995.1196","article-title":"Runge\u2013Kutta methods for hyperbolic conservation laws with stiff relaxation terms","volume":"122","author":"Jin","year":"1995","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2018.01.051_br0200","series-title":"Lecture Notes for Summer School on \u201cMethods and Models of Kinetic Theory\u201d (M&MKT) Porto Ercole, Grosseto, Italy","first-page":"177","article-title":"Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review","author":"Jin","year":"2010"},{"issue":"4","key":"10.1016\/j.jcp.2018.01.051_br0210","doi-asserted-by":"crossref","first-page":"2113","DOI":"10.1137\/07070485X","article-title":"Highly efficient strong stability-preserving Runge\u2013Kutta methods with low-storage implementations","volume":"30","author":"Ketcheson","year":"2008","journal-title":"SIAM J. Sci. Comput."},{"issue":"3","key":"10.1016\/j.jcp.2018.01.051_br0220","doi-asserted-by":"crossref","first-page":"482","DOI":"10.1007\/BF01933264","article-title":"Contractivity of Runge\u2013Kutta methods","volume":"31","author":"Kraaijevanger","year":"1991","journal-title":"BIT Numer. Math."},{"issue":"2","key":"10.1016\/j.jcp.2018.01.051_br0230","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1070\/SM1970v010n02ABEH002156","article-title":"First order quasilinear equations in several independent variables","volume":"10","author":"Kru\u017ekov","year":"1970","journal-title":"Math. USSR Sb."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0240","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/0021-9991(90)90097-K","article-title":"A study of numerical methods for hyperbolic conservation laws with stiff source terms","volume":"86","author":"LeVeque","year":"1990","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2018.01.051_br0250","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.jcp.2013.11.020","article-title":"Exponential Runge\u2013Kutta for the inhomogeneous Boltzmann equations with high order of accuracy","volume":"259","author":"Li","year":"2014","journal-title":"J. Comput. Phys."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0260","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/s10915-013-9724-x","article-title":"Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws","volume":"58","author":"Liang","year":"2014","journal-title":"J. Sci. Comput."},{"issue":"2","key":"10.1016\/j.jcp.2018.01.051_br0270","doi-asserted-by":"crossref","first-page":"760","DOI":"10.1137\/0733038","article-title":"Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes i","volume":"33","author":"Liu","year":"1996","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2018.01.051_br0280","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/j.jcp.2016.02.079","article-title":"Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics","volume":"315","author":"Qin","year":"2016","journal-title":"J. Comput. Phys."},{"issue":"253","key":"10.1016\/j.jcp.2018.01.051_br0290","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1090\/S0025-5718-05-01772-2","article-title":"Global optimization of explicit strong-stability-preserving Runge\u2013Kutta methods","volume":"75","author":"Ruuth","year":"2006","journal-title":"Math. Comput."},{"issue":"2","key":"10.1016\/j.jcp.2018.01.051_br0300","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1093\/imanum\/16.2.201","article-title":"Finite-difference schemes for scalar conservation laws with source terms","volume":"16","author":"Schroll","year":"1996","journal-title":"IMA J. Numer. Anal."},{"issue":"2","key":"10.1016\/j.jcp.2018.01.051_br0310","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/0021-9991(88)90177-5","article-title":"Efficient implementation of essentially non-oscillatory shock-capturing schemes","volume":"77","author":"Shu","year":"1988","journal-title":"J. Comput. Phys."},{"issue":"2","key":"10.1016\/j.jcp.2018.01.051_br0320","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1137\/S0036142901389025","article-title":"A new class of optimal high-order strong-stability-preserving time discretization methods","volume":"40","author":"Spiteri","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0330","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1137\/0732004","article-title":"Error bounds for fractional step methods for conservation laws with source terms","volume":"32","author":"Tang","year":"1995","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0340","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.jcp.2011.08.031","article-title":"High order finite difference methods with subcell resolution for advection equations with stiff source terms","volume":"231","author":"Wang","year":"2012","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2018.01.051_br0350","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.jcp.2015.06.012","article-title":"High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics","volume":"298","author":"Wu","year":"2015","journal-title":"J. Comput. Phys."},{"issue":"1","key":"10.1016\/j.jcp.2018.01.051_br0360","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s10915-013-9695-y","article-title":"Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes","volume":"57","author":"Xing","year":"2013","journal-title":"J. Sci. Comput."},{"issue":"12","key":"10.1016\/j.jcp.2018.01.051_br0370","doi-asserted-by":"crossref","first-page":"1476","DOI":"10.1016\/j.advwatres.2010.08.005","article-title":"Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations","volume":"33","author":"Xing","year":"2010","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.jcp.2018.01.051_br0380","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/j.jcp.2013.06.026","article-title":"A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows","volume":"252","author":"Xiong","year":"2013","journal-title":"J. Comput. Phys."},{"issue":"289","key":"10.1016\/j.jcp.2018.01.051_br0390","doi-asserted-by":"crossref","first-page":"2213","DOI":"10.1090\/S0025-5718-2013-02788-3","article-title":"Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem","volume":"83","author":"Xu","year":"2014","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2018.01.051_br0400","first-page":"81","article-title":"Bound-Preserving High-Order Schemes","volume":"18","author":"Xu","year":"2017","journal-title":"Handb. Numer. Anal."},{"issue":"3","key":"10.1016\/j.jcp.2018.01.051_br0410","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1137\/090771363","article-title":"Stability analysis and a priori error estimates of the third order explicit Runge\u2013Kutta discontinuous Galerkin method for scalar conservation laws","volume":"48","author":"Zhang","year":"2010","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2018.01.051_br0420","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.jcp.2016.10.002","article-title":"On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier\u2013Stokes equations","volume":"328","author":"Zhang","year":"2017","journal-title":"J. Comput. Phys."},{"issue":"9","key":"10.1016\/j.jcp.2018.01.051_br0430","doi-asserted-by":"crossref","first-page":"3091","DOI":"10.1016\/j.jcp.2009.12.030","article-title":"On maximum-principle-satisfying high order schemes for scalar conservation laws","volume":"229","author":"Zhang","year":"2010","journal-title":"J. Comput. Phys."},{"issue":"23","key":"10.1016\/j.jcp.2018.01.051_br0440","doi-asserted-by":"crossref","first-page":"8918","DOI":"10.1016\/j.jcp.2010.08.016","article-title":"On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes","volume":"229","author":"Zhang","year":"2010","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2018.01.051_br0450","first-page":"2752","article-title":"Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments","volume":"467","author":"Zhang","year":"2011","journal-title":"Proc. R. Soc. Lond. Ser. A"},{"issue":"4","key":"10.1016\/j.jcp.2018.01.051_br0460","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1016\/j.jcp.2010.10.036","article-title":"Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms","volume":"230","author":"Zhang","year":"2011","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2018.01.051_br0470","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.jcp.2012.09.032","article-title":"Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection\u2013diffusion equations on triangular meshes","volume":"234","author":"Zhang","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2018.01.051_br0480","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.jcp.2014.08.044","article-title":"A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations","volume":"278","author":"Zhao","year":"2014","journal-title":"J. Comput. Phys."}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999118300731?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999118300731?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,11]],"date-time":"2021-04-11T05:49:11Z","timestamp":1618120151000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999118300731"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,5]]},"references-count":48,"alternative-id":["S0021999118300731"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2018.01.051","relation":{},"ISSN":["0021-9991"],"issn-type":[{"type":"print","value":"0021-9991"}],"subject":[],"published":{"date-parts":[[2018,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bound-preserving modified exponential Runge\u2013Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2018.01.051","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}