{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T01:32:10Z","timestamp":1723167130941},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,10,1]],"date-time":"2015-10-01T00:00:00Z","timestamp":1443657600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2016,7,7]],"date-time":"2016-07-07T00:00:00Z","timestamp":1467849600000},"content-version":"am","delay-in-days":280,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["91230110","11328104","11426214","2014QNB35"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DMS-1115118"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2015,10]]},"DOI":"10.1016\/j.jcp.2015.06.014","type":"journal-article","created":{"date-parts":[[2015,7,2]],"date-time":"2015-07-02T18:51:01Z","timestamp":1435863061000},"page":"661-677","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["A moving mesh finite difference method for equilibrium radiation diffusion equations"],"prefix":"10.1016","volume":"298","author":[{"given":"Xiaobo","family":"Yang","sequence":"first","affiliation":[]},{"given":"Weizhang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jianxian","family":"Qiu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2015.06.014_br0010","series-title":"Numerical Modeling in Applied Physics and Astrophysics","author":"Bowes","year":"1991"},{"key":"10.1016\/j.jcp.2015.06.014_br0020","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1093\/imamat\/24.3.293","article-title":"Diagonally implicit Runge\u2013Kutta formulate with error estimate","volume":"24","author":"Cash","year":"1979","journal-title":"J. Inst. Math. Appl."},{"key":"10.1016\/j.jcp.2015.06.014_br0030","series-title":"Radiation Hydrodynamics","author":"Castor","year":"2004"},{"key":"10.1016\/j.jcp.2015.06.014_br0040","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1145\/992200.992206","article-title":"Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method","volume":"30","author":"Davis","year":"2004","journal-title":"ACM Trans. Math. Softw."},{"key":"10.1016\/j.jcp.2015.06.014_br0050","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/0021-9991(91)90285-S","article-title":"Adaptive grid generation from harmonic maps on Riemannian manifolds","volume":"95","author":"Dvinsky","year":"1991","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0060","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1006\/jcph.2001.6809","article-title":"Practical aspects of formulation and solution of moving mesh partial differential equations","volume":"171","author":"Huang","year":"2001","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0070","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1006\/jcph.2001.6945","article-title":"Variational mesh adaptation: isotropy and equidistribution","volume":"174","author":"Huang","year":"2001","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0080","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1006\/jcph.1994.1135","article-title":"Moving mesh methods based on moving mesh partial differential equations","volume":"113","author":"Huang","year":"1994","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0090","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/S0168-9274(97)00082-2","article-title":"A high dimensional moving mesh strategy","volume":"26","author":"Huang","year":"1998","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2015.06.014_br0100","article-title":"Adaptive Moving Mesh Methods","volume":"vol. 174","author":"Huang","year":"2011"},{"key":"10.1016\/j.jcp.2015.06.014_br0110","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1016\/S0021-9991(02)00040-2","article-title":"Variational mesh adaptation II: error estimates and monitor functions","volume":"184","author":"Huang","year":"2003","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0120","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/S0021-9991(03)00008-1","article-title":"On balanced approximations for time integration of multiple time scale systems","volume":"185","author":"Knoll","year":"2003","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0130","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1016\/j.jcp.2007.05.034","article-title":"Numerical analysis of time integration errors for nonequilibrium radiation diffusion","volume":"226","author":"Knoll","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0140","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/S0022-4073(98)00132-0","article-title":"An efficient nonlinear solution method for non-equilibrium radiation diffusion","volume":"63","author":"Knoll","year":"1999","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"10.1016\/j.jcp.2015.06.014_br0150","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/S0022-4073(00)00112-6","article-title":"Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion","volume":"70","author":"Knoll","year":"2001","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"10.1016\/j.jcp.2015.06.014_br0160","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.jcp.2006.03.011","article-title":"Cost-effectiveness of fully implicit moving mesh adaptation: a practical investigation in 1D","volume":"219","author":"Lapenta","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0170","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1016\/j.jcp.2003.11.016","article-title":"A comparison of implicit time integration methods for nonlinear relaxation and diffusion","volume":"196","author":"Lowrie","year":"2004","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0180","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.jcp.2013.01.052","article-title":"The cutoff method for numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations","volume":"242","author":"Lu","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0190","series-title":"Multilevel Adaptive Methods for Partial Differential Equations","author":"McCormick","year":"1989"},{"key":"10.1016\/j.jcp.2015.06.014_br0200","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1090\/S0025-5718-1986-0829618-X","article-title":"The fast adaptive composite grid (FAC) method for elliptic equations","volume":"46","author":"McCormick","year":"1986","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2015.06.014_br0210","series-title":"Foundations of Radiation Hydrodynamics","author":"Mihalas","year":"1984"},{"key":"10.1016\/j.jcp.2015.06.014_br0220","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1006\/jcph.2000.6488","article-title":"Physical-based preconditioning and the Newton\u2013Krylov method for non-equilibrium radiation diffusion","volume":"160","author":"Mousseau","year":"2000","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0230","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1002\/nla.386","article-title":"One-level Newton\u2013Krylov\u2013Schwarz algorithm for unsteady nonlinear radiation diffusion problems","volume":"11","author":"Ovtchinnikov","year":"2004","journal-title":"Numer. Linear Algebra Appl."},{"key":"10.1016\/j.jcp.2015.06.014_br0240","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1137\/040609069","article-title":"Solution of equilibrium radiation diffusion problems using implicit adaptive mesh refinement","volume":"27","author":"Pernice","year":"2006","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2015.06.014_br0250","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1006\/jcph.1999.6240","article-title":"A multigrid Newton\u2013Krylov method for multimaterial equilibrium radiation diffusion","volume":"152","author":"Rider","year":"1999","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0260","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/0022-4073(84)90054-2","article-title":"Adaptive-mesh radiation hydrodynamics I: the radiation transport equation in a completely adaptive coordinate system","volume":"31","author":"Winkler","year":"1984","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"10.1016\/j.jcp.2015.06.014_br0270","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1016\/0022-4073(84)90055-4","article-title":"Adaptive-mesh radiation hydrodynamics II: the radiation and fluid equations in relativistic flows","volume":"31","author":"Winkler","year":"1984","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"10.1016\/j.jcp.2015.06.014_br0280","first-page":"475","article-title":"Progress in numerical methods for radiation diffusion equations","volume":"26","author":"Yuan","year":"2009","journal-title":"Chin. J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0290","doi-asserted-by":"crossref","first-page":"844","DOI":"10.4208\/cicp.310110.161010a","article-title":"Picard\u2013Newton iterative method with time step control for multimaterial non-equilibrium radiation diffusion problem","volume":"10","author":"Yue","year":"2011","journal-title":"Commun. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.014_br0300","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1002\/fld.3838","article-title":"Finite volume element methods for nonequilibrium radiation diffusion equations","volume":"73","author":"Zhao","year":"2013","journal-title":"Int. J. Numer. Methods Fluids"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115004003?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115004003?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,9]],"date-time":"2024-06-09T20:34:44Z","timestamp":1717965284000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999115004003"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,10]]},"references-count":30,"alternative-id":["S0021999115004003"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2015.06.014","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2015,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A moving mesh finite difference method for equilibrium radiation diffusion equations","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2015.06.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}