{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T02:21:48Z","timestamp":1719886908522},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,10,1]],"date-time":"2015-10-01T00:00:00Z","timestamp":1443657600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"publisher","award":["11371342"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2015,10]]},"DOI":"10.1016\/j.jcp.2015.06.007","type":"journal-article","created":{"date-parts":[[2015,6,18]],"date-time":"2015-06-18T21:19:04Z","timestamp":1434662344000},"page":"387-405","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["An efficient, unconditionally energy stable local discontinuous Galerkin scheme for the Cahn\u2013Hilliard\u2013Brinkman system"],"prefix":"10.1016","volume":"298","author":[{"given":"Ruihan","family":"Guo","sequence":"first","affiliation":[]},{"given":"Yan","family":"Xu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2015.06.007_br0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s002110050276","article-title":"Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy","volume":"77","author":"Barrett","year":"1997","journal-title":"Numer. Math."},{"key":"10.1016\/j.jcp.2015.06.007_br0020","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1137\/S0036142997331669","article-title":"Finite element approximation of the Cahn\u2013Hilliard equation with degenerate mobility","volume":"37","author":"Barrett","year":"1999","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0030","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1051\/m2an:2001133","article-title":"On fully practical finite element approximations of degenerate Cahn\u2013Hilliard systems","volume":"35","author":"Barrett","year":"2001","journal-title":"Math. Model. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0040","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1006\/jcph.1996.5572","article-title":"A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier\u2013Stokes equations","volume":"131","author":"Bassi","year":"1997","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0050","doi-asserted-by":"crossref","first-page":"795","DOI":"10.1016\/0001-6160(61)90182-1","article-title":"On spinodal decomposition","volume":"9","author":"Cahn","year":"1961","journal-title":"Acta Metall."},{"key":"10.1016\/j.jcp.2015.06.007_br0060","first-page":"411","article-title":"TVB Runge\u2013Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework","volume":"52","author":"Cockburn","year":"1989","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2015.06.007_br0070","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/0021-9991(89)90183-6","article-title":"TVB Runge\u2013Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems","volume":"84","author":"Cockburn","year":"1989","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0080","first-page":"545","article-title":"The Runge\u2013Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case","volume":"54","author":"Cockburn","year":"1990","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2015.06.007_br0090","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1006\/jcph.1998.5892","article-title":"The Runge\u2013Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems","volume":"141","author":"Cockburn","year":"1998","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0100","doi-asserted-by":"crossref","first-page":"2440","DOI":"10.1137\/S0036142997316712","article-title":"The local discontinuous Galerkin method for time-dependent convection\u2013diffusion systems","volume":"35","author":"Cockburn","year":"1998","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0110","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1137\/S0036142900380121","article-title":"Local discontinuous Galerkin methods for the Stokes system","volume":"40","author":"Cockburn","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0120","doi-asserted-by":"crossref","first-page":"929","DOI":"10.4208\/cicp.171211.130412a","article-title":"An efficient, energy stable scheme for the Cahn\u2013Hilliard\u2013Brinkman system","volume":"13","author":"Collins","year":"2013","journal-title":"Commun. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0130","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1137\/130950628","article-title":"Analysis of a mixed finite element method for a Cahn\u2013Hilliard\u2013Darcy\u2013Stokes system","volume":"53","author":"Diegel","year":"2015","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0140","doi-asserted-by":"crossref","first-page":"1686","DOI":"10.1137\/0153078","article-title":"Systems of Cahn\u2013Hilliard equations","volume":"53","author":"Eyre","year":"1993","journal-title":"SIAM J. Appl. Math."},{"key":"10.1016\/j.jcp.2015.06.007_br0150","doi-asserted-by":"crossref","first-page":"1320","DOI":"10.1137\/110827119","article-title":"Analysis of a Darcy\u2013Cahn\u2013Hilliard diffuse interface model for the Hele\u2013Shaw flow and its fully discrete finite element approximation","volume":"50","author":"Feng","year":"2012","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0160","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1007\/PL00005429","article-title":"A stable and conservative finite difference scheme for the Cahn\u2013Hilliard equation","volume":"87","author":"Furihata","year":"2001","journal-title":"Numer. Math."},{"key":"10.1016\/j.jcp.2015.06.007_br0170","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1007\/s10915-013-9738-4","article-title":"Efficient solvers of discontinuous Galerkin discretization for the Cahn\u2013Hilliard equations","volume":"58","author":"Guo","year":"2014","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2015.06.007_br0180","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.jcp.2014.01.037","article-title":"An efficient fully-discrete local discontinuous Galerkin method for the Cahn\u2013Hilliard\u2013Hele\u2013Shaw system","volume":"264","author":"Guo","year":"2014","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0190","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.jcp.2005.07.004","article-title":"A multigrid finite element solver for the Cahn\u2013Hilliard equation","volume":"212","author":"Kay","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0200","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1016\/j.jcp.2003.07.035","article-title":"Conservative multigrid methods for Cahn\u2013Hilliard fluids","volume":"193","author":"Kim","year":"2004","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0210","doi-asserted-by":"crossref","first-page":"53","DOI":"10.4310\/CMS.2004.v2.n1.a4","article-title":"Conservative multigrid methods for ternary Cahn\u2013Hilliard systems","volume":"2","author":"Kim","year":"2004","journal-title":"Commun. Math. Sci."},{"key":"10.1016\/j.jcp.2015.06.007_br0220","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1063\/1.1425843","article-title":"Modeling pinchoff and reconnection in a Hele\u2013Shaw cell. I. The models and their calibration","volume":"14","author":"Lee","year":"2002","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2015.06.007_br0230","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1063\/1.1425844","article-title":"Modeling pinchoff and reconnection in a Hele\u2013Shaw cell. II. Analysis and simulation in the nonlinear regime","volume":"14","author":"Lee","year":"2002","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.jcp.2015.06.007_br0240","doi-asserted-by":"crossref","first-page":"202001","DOI":"10.1088\/1751-8113\/43\/20\/202001","article-title":"Theoretical studies of phase-separation kinetics in a Brinkman porous medium","volume":"43","author":"Ngamsaad","year":"2010","journal-title":"J. Phys. A, Math. Theor."},{"key":"10.1016\/j.jcp.2015.06.007_br0250","series-title":"Triangular mesh method for the neutron transport equation","author":"Reed","year":"1973"},{"key":"10.1016\/j.jcp.2015.06.007_br0260","first-page":"1463","article-title":"A second-order accurate linearized difference scheme for the twodimensional Cahn\u2013Hilliard equation","volume":"64","author":"Sun","year":"1995","journal-title":"Math. Comput."},{"key":"10.1016\/j.jcp.2015.06.007_br0270","series-title":"Multigrid","author":"Trottenberg","year":"2005"},{"key":"10.1016\/j.jcp.2015.06.007_br0280","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s10915-010-9363-4","article-title":"Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn\u2013Hilliard\u2013Hele\u2013Shaw system of equations","volume":"44","author":"Wise","year":"2010","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.jcp.2015.06.007_br0290","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1016\/j.jcp.2007.08.001","article-title":"Local discontinuous Galerkin methods for the Cahn\u2013Hilliard type equations","volume":"227","author":"Xia","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0300","first-page":"821","article-title":"Application of the local discontinuous Galerkin method for the Allen\u2013Cahn\/Cahn\u2013Hilliard system","volume":"5","author":"Xia","year":"2009","journal-title":"Commun. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0310","first-page":"1","article-title":"Local discontinuous Galerkin methods for high-order time-dependent partial differential equations","volume":"7","author":"Xu","year":"2010","journal-title":"Commun. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.06.007_br0320","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1137\/S0036142901390378","article-title":"A local discontinuous Galerkin method for KdV type equations","volume":"40","author":"Yan","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.06.007_br0330","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1023\/A:1015132126817","article-title":"Local discontinuous Galerkin methods for partial differential equations with higher order derivatives","volume":"17","author":"Yan","year":"2002","journal-title":"J. Sci. Comput."}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115003927?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115003927?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T11:53:37Z","timestamp":1572609217000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999115003927"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,10]]},"references-count":33,"alternative-id":["S0021999115003927"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2015.06.007","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2015,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An efficient, unconditionally energy stable local discontinuous Galerkin scheme for the Cahn\u2013Hilliard\u2013Brinkman system","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2015.06.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}