{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T04:31:27Z","timestamp":1729225887953,"version":"3.27.0"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,10,1]],"date-time":"2015-10-01T00:00:00Z","timestamp":1443657600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2015,10,1]],"date-time":"2015-10-01T00:00:00Z","timestamp":1443657600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11271068","11326225","11401319"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Natural Science Youth Foundation of Jiangsu Province","award":["BK20130860"]},{"DOI":"10.13039\/501100005374","name":"Nanjing University of Posts and Telecommunications","doi-asserted-by":"publisher","award":["NY213051"],"id":[{"id":"10.13039\/501100005374","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006469","name":"FDCT","doi-asserted-by":"publisher","award":["105\/2012\/A3"],"id":[{"id":"10.13039\/501100006469","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004733","name":"University of Macau","doi-asserted-by":"publisher","award":["MYRG102(Y2-L3)-FST13-SHW"],"id":[{"id":"10.13039\/501100004733","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2015,10]]},"DOI":"10.1016\/j.jcp.2015.05.052","type":"journal-article","created":{"date-parts":[[2015,6,24]],"date-time":"2015-06-24T00:31:11Z","timestamp":1435105871000},"page":"520-538","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Three-point combined compact difference schemes for time-fractional advection\u2013diffusion equations with smooth solutions"],"prefix":"10.1016","volume":"298","author":[{"given":"Guang-Hua","family":"Gao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5507-6083","authenticated-orcid":false,"given":"Hai-Wei","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2011","series-title":"Functional Fractional Calculus","author":"Das","key":"10.1016\/j.jcp.2015.05.052_br0010"},{"year":"1999","series-title":"Fractional Differential Equations","author":"Podlubny","key":"10.1016\/j.jcp.2015.05.052_br0020"},{"year":"2006","series-title":"Theory and Applications of Fractional Differential Equations","author":"Kilbas","key":"10.1016\/j.jcp.2015.05.052_br0030"},{"key":"10.1016\/j.jcp.2015.05.052_br0040","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/0168-9274(93)90012-G","article-title":"A finite difference scheme for partial integro-differential equations with a weakly singular kernel","volume":"11","author":"Tang","year":"1993","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2015.05.052_br0050","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.apnum.2005.02.008","article-title":"Finite difference approximations for two-sided space-fractional partial differential equations","volume":"56","author":"Meerschaert","year":"2006","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2015.05.052_br0060","doi-asserted-by":"crossref","first-page":"496","DOI":"10.4208\/aamm.10-m1210","article-title":"Finite difference\/element method for a two-dimensional modified fractional diffusion equation","volume":"4","author":"Zhang","year":"2012","journal-title":"Adv. Appl. Math. Mech."},{"key":"10.1016\/j.jcp.2015.05.052_br0070","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1137\/030602666","article-title":"An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations","volume":"42","author":"Yuste","year":"2005","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.05.052_br0080","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.jcp.2004.11.025","article-title":"The accuracy and stability of an implicit solution method for the fractional diffusion equation","volume":"205","author":"Langlands","year":"2005","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0090","doi-asserted-by":"crossref","first-page":"C48","DOI":"10.21914\/anziamj.v47i0.1030","article-title":"A fractional-order implicit difference approximation for the space\u2013time fractional diffusion equation","volume":"47","author":"Liu","year":"2006","journal-title":"ANZIAM J."},{"key":"10.1016\/j.jcp.2015.05.052_br0100","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.apnum.2005.03.003","article-title":"A fully discrete difference scheme for a diffusion-wave system","volume":"56","author":"Sun","year":"2006","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2015.05.052_br0110","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1016\/j.jcp.2007.02.001","article-title":"Finite difference\/spectral approximations for the time-fractional diffusion equation","volume":"225","author":"Lin","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0120","doi-asserted-by":"crossref","first-page":"1369","DOI":"10.1090\/S0025-5718-2010-02438-X","article-title":"Finite difference\/spectral approximations for the fractional cable equation","volume":"80","author":"Lin","year":"2011","journal-title":"Math. Comp."},{"key":"10.1016\/j.jcp.2015.05.052_br0130","doi-asserted-by":"crossref","first-page":"886","DOI":"10.1016\/j.jcp.2007.05.012","article-title":"A Fourier method for the fractional diffusion equation describing sub-diffusion","volume":"227","author":"Chen","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0140","doi-asserted-by":"crossref","first-page":"1346","DOI":"10.1002\/nme.3223","article-title":"Time-dependent fractional advection\u2013diffusion equations by an implicit MLS meshless method","volume":"88","author":"Zhuang","year":"2011","journal-title":"Int. J. Numer. Methods Eng."},{"key":"10.1016\/j.jcp.2015.05.052_br0150","doi-asserted-by":"crossref","first-page":"1079","DOI":"10.1137\/060673114","article-title":"New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation","volume":"46","author":"Zhuang","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.05.052_br0160","doi-asserted-by":"crossref","first-page":"1760","DOI":"10.1137\/080730597","article-title":"Numerical methods for the variable-order fractional advection\u2013diffusion equation with a nonlinear source term","volume":"47","author":"Zhuang","year":"2009","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2015.05.052_br0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11075-009-9320-1","article-title":"Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation","volume":"54","author":"Chen","year":"2010","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.jcp.2015.05.052_br0180","doi-asserted-by":"crossref","first-page":"7792","DOI":"10.1016\/j.jcp.2009.07.021","article-title":"Compact finite difference method for the fractional diffusion equation","volume":"228","author":"Cui","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0190","doi-asserted-by":"crossref","first-page":"2998","DOI":"10.1016\/j.apm.2010.01.008","article-title":"A compact difference scheme for the fractional diffusion-wave equation","volume":"34","author":"Du","year":"2010","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.jcp.2015.05.052_br0200","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1016\/j.jcp.2010.10.007","article-title":"A compact finite difference scheme for the fractional sub-diffusion equations","volume":"230","author":"Gao","year":"2011","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0210","doi-asserted-by":"crossref","first-page":"1645","DOI":"10.1016\/j.cpc.2011.04.013","article-title":"A compact finite difference scheme for the fourth-order fractional diffusion-wave system","volume":"182","author":"Hu","year":"2011","journal-title":"Comput. Phys. Commun."},{"key":"10.1016\/j.jcp.2015.05.052_br0220","doi-asserted-by":"crossref","first-page":"4027","DOI":"10.1016\/j.apm.2011.11.027","article-title":"Implicit compact difference schemes for the fractional cable equation","volume":"36","author":"Hu","year":"2012","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.jcp.2015.05.052_br0230","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1007\/s11075-012-9631-5","article-title":"Compact finite difference scheme for the solution of time fractional advection\u2013dispersion equation","volume":"63","author":"Mohebbi","year":"2013","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.jcp.2015.05.052_br0240","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.jcp.2012.08.026","article-title":"Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions","volume":"232","author":"Ren","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0250","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.jcp.2012.12.013","article-title":"A high order schema for the numerical solution of the fractional ordinary differential equations","volume":"238","author":"Cao","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0260","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.jcp.2013.11.017","article-title":"A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications","volume":"259","author":"Gao","year":"2014","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0270","doi-asserted-by":"crossref","first-page":"A2976","DOI":"10.1137\/130910865","article-title":"The use of finite difference\/element approaches for solving the time-fractional subdiffusion equation","volume":"35","author":"Zeng","year":"2013","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2015.05.052_br0280","doi-asserted-by":"crossref","first-page":"3802","DOI":"10.1016\/j.apm.2013.12.002","article-title":"Higher order finite difference method for the reaction and anomalous-diffusion equation","volume":"38","author":"Li","year":"2014","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.jcp.2015.05.052_br0290","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jcp.2014.08.012","article-title":"Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation","volume":"277","author":"Wang","year":"2014","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0300","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1006\/jcph.1998.5899","article-title":"A three-point combined compact difference scheme","volume":"140","author":"Chu","year":"1998","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0310","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1006\/jcph.1998.6141","article-title":"A three-point sixth-order nonuniform combined compact difference scheme","volume":"148","author":"Chu","year":"1999","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0320","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/S0895-7177(00)00138-2","article-title":"A three-point sixth-order staggered combined compact difference scheme","volume":"32","author":"Chu","year":"2000","journal-title":"Math. Comput. Model."},{"key":"10.1016\/j.jcp.2015.05.052_br0330","doi-asserted-by":"crossref","first-page":"639","DOI":"10.1016\/S0021-9991(03)00152-9","article-title":"A fast solver of the shallow water equations on a sphere using a combined compact difference scheme","volume":"187","author":"Nihei","year":"2003","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0340","doi-asserted-by":"crossref","first-page":"3048","DOI":"10.1016\/j.jcp.2009.01.003","article-title":"A new combined stable and dispersion relation preserving compact scheme for non-periodic problems","volume":"228","author":"Sengupta","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0350","doi-asserted-by":"crossref","first-page":"6150","DOI":"10.1016\/j.jcp.2009.05.038","article-title":"Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties","volume":"228","author":"Sengupta","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0360","first-page":"241","article-title":"Truncation error and oscillation property of the combined compact difference scheme","volume":"161","author":"Zhang","year":"2005","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.jcp.2015.05.052_br0370","doi-asserted-by":"crossref","first-page":"2865","DOI":"10.1016\/j.jcp.2011.12.028","article-title":"A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions","volume":"231","author":"Gao","year":"2012","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.052_br0380","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.apm.2007.11.005","article-title":"Finite difference approximations for the fractional Fokker\u2013Planck equation","volume":"33","author":"Chen","year":"2009","journal-title":"Appl. Math. Model."}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115003940?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115003940?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T16:11:39Z","timestamp":1729181499000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999115003940"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,10]]},"references-count":38,"alternative-id":["S0021999115003940"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2015.05.052","relation":{},"ISSN":["0021-9991"],"issn-type":[{"type":"print","value":"0021-9991"}],"subject":[],"published":{"date-parts":[[2015,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Three-point combined compact difference schemes for time-fractional advection\u2013diffusion equations with smooth solutions","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2015.05.052","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}