{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T07:23:05Z","timestamp":1725348185294},"reference-count":20,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,10,1]],"date-time":"2015-10-01T00:00:00Z","timestamp":1443657600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2015,10]]},"DOI":"10.1016\/j.jcp.2015.05.051","type":"journal-article","created":{"date-parts":[[2015,6,17]],"date-time":"2015-06-17T22:42:52Z","timestamp":1434580972000},"page":"254-265","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":44,"special_numbering":"C","title":["A wavelet-based computational method for solving stochastic It\u00f4\u2013Volterra integral equations"],"prefix":"10.1016","volume":"298","author":[{"given":"Fakhrodin","family":"Mohammadi","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2015.05.051_br0010","article-title":"Numerical Solution of Stochastic Differential Equations","author":"Kloeden","year":"1999"},{"key":"10.1016\/j.jcp.2015.05.051_br0020","series-title":"Stochastic Differential Equations: An Introduction with Applications","author":"Oksendal","year":"1998"},{"key":"10.1016\/j.jcp.2015.05.051_br0030","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1016\/j.mcm.2011.08.053","article-title":"Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions","volume":"55","author":"Maleknejad","year":"2012","journal-title":"Math. Comput. Model."},{"key":"10.1016\/j.jcp.2015.05.051_br0040","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.camwa.2011.10.079","article-title":"A numerical method for solving m-dimensional stochastic It\u00f4\u2013Volterra integral equations by stochastic operational matrix","volume":"63","author":"Maleknejad","year":"2012","journal-title":"Comput. Math. Appl."},{"issue":"1","key":"10.1016\/j.jcp.2015.05.051_br0050","first-page":"1","article-title":"Application of triangular functions to numerical solution of stochastic Volterra integral equations","volume":"43","author":"Khodabin","year":"2011","journal-title":"IAENG Int. J. Appl. Math."},{"key":"10.1016\/j.jcp.2015.05.051_br0060","doi-asserted-by":"crossref","first-page":"1903","DOI":"10.1016\/j.camwa.2012.03.042","article-title":"Numerical approach for solving stochastic Volterra\u2013Fredholm integral equations by stochastic operational matrix","volume":"64","author":"Khodabin","year":"2012","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2015.05.051_br0070","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.jcp.2014.03.064","article-title":"A computational method for solving stochastic It\u00f4\u2013Volterra integral equations based on stochastic operational matrix for generalized hat basis functions","volume":"270","author":"Heydari","year":"2014","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2015.05.051_br0080","doi-asserted-by":"crossref","unstructured":"D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43 (3), 525\u2013546.","DOI":"10.1137\/S0036144500378302"},{"issue":"3","key":"10.1016\/j.jcp.2015.05.051_br0090","first-page":"260","article-title":"Successive approximations for solutions of second order stochastic integro-differential equations of Ito type","volume":"21","author":"Murge","year":"1990","journal-title":"Indian J. Pure Appl. Math."},{"key":"10.1016\/j.jcp.2015.05.051_br0100","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1016\/j.mcm.2006.07.017","article-title":"Numerical solution of random differential equations: a mean square approach","volume":"45","author":"Cortes","year":"2007","journal-title":"Math. Comput. Model."},{"key":"10.1016\/j.jcp.2015.05.051_br0110","doi-asserted-by":"crossref","first-page":"1098","DOI":"10.1016\/j.camwa.2006.05.030","article-title":"Mean square numerical solution of random differential equations: facts and possibilities","volume":"53","author":"Cortes","year":"2007","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2015.05.051_br0120","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1016\/S0252-9602(10)60104-X","article-title":"One linear analytic approximation for stochastic integro-differential equations","volume":"30","author":"Jankovic","year":"2010","journal-title":"Acta Math. Sci."},{"key":"10.1016\/j.jcp.2015.05.051_br0130","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1137\/1031128","article-title":"Wavelets and dilation equations: a brief introduction","volume":"31","author":"Strang","year":"1989","journal-title":"SIAM Rev."},{"key":"10.1016\/j.jcp.2015.05.051_br0140","series-title":"A First Course in Wavelets with Fourier Analysis","author":"Boggess","year":"2001"},{"issue":"1","key":"10.1016\/j.jcp.2015.05.051_br0150","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.amc.2006.10.008","article-title":"Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration","volume":"188","author":"Babolian","year":"2007","journal-title":"Appl. Math. Comput."},{"issue":"9","key":"10.1016\/j.jcp.2015.05.051_br0160","doi-asserted-by":"crossref","first-page":"2284","DOI":"10.1016\/j.cnsns.2009.09.020","article-title":"Solving a nonlinear fractional differential equation using Chebyshev wavelets","volume":"15","author":"Li","year":"2010","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.jcp.2015.05.051_br0170","doi-asserted-by":"crossref","DOI":"10.1155\/2010\/138408","article-title":"Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind","volume":"2010","author":"Adibi","year":"2010","journal-title":"Math. Probl. Eng."},{"issue":"1","key":"10.1016\/j.jcp.2015.05.051_br0180","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.cnsns.2013.04.026","article-title":"Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations","volume":"19","author":"Heydari","year":"2014","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.jcp.2015.05.051_br0190","series-title":"Block Pulse Functions and Their Applications in Control Systems","author":"Jiang","year":"1992"},{"issue":"1","key":"10.1016\/j.jcp.2015.05.051_br0200","first-page":"3","article-title":"Numerical solution of nonlinear stochastic integral equation by stochastic operational matrix based on Bernstein polynomials","volume":"57","author":"Asgari","year":"2014","journal-title":"Bull. Math. Soc. Sci. Math. Roum."}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115003915?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999115003915?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,8,11]],"date-time":"2023-08-11T11:08:00Z","timestamp":1691752080000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999115003915"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,10]]},"references-count":20,"alternative-id":["S0021999115003915"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2015.05.051","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2015,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A wavelet-based computational method for solving stochastic It\u00f4\u2013Volterra integral equations","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2015.05.051","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}