{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T13:11:31Z","timestamp":1723209091772},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"crossref","award":["2011637083"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100010083","name":"Hunan Provincial Innovation Foundation for Postgraduates","doi-asserted-by":"crossref","award":["CX2011B080"],"id":[{"id":"10.13039\/501100010083","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Excellent Doctoral Dissertation Foundation of Central South University","award":["2011ybjz005"]},{"name":"NSF","award":["DMS-1115416"]},{"name":"NSF","award":["DMS-1115416"]},{"name":"OSD\/AFOSR","award":["FA9550-09-1-0613"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2014,1]]},"DOI":"10.1016\/j.jcp.2013.09.041","type":"journal-article","created":{"date-parts":[[2013,10,4]],"date-time":"2013-10-04T19:46:05Z","timestamp":1380915965000},"page":"241-258","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":49,"special_numbering":"PA","title":["Stable multi-domain spectral penalty methods for fractional partial differential equations"],"prefix":"10.1016","volume":"257","author":[{"given":"Qinwu","family":"Xu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8074-1586","authenticated-orcid":false,"given":"Jan S.","family":"Hesthaven","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2013.09.041_br0010","series-title":"Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables","author":"Abramowitz","year":"1965"},{"issue":"3","key":"10.1016\/j.jcp.2013.09.041_br0030","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1122\/1.549724","article-title":"A theoretical basis for the application of fractional calculus to viscoelasticity","volume":"27","author":"Bagley","year":"1983","journal-title":"J. Rheology"},{"issue":"6","key":"10.1016\/j.jcp.2013.09.041_br0040","doi-asserted-by":"crossref","first-page":"918","DOI":"10.2514\/3.9007","article-title":"Fractional calculus in the transient analysis of viscoelastically damped structures","volume":"23","author":"Bagley","year":"1985","journal-title":"AIAA J."},{"key":"10.1016\/j.jcp.2013.09.041_br0050","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/0304-4076(95)01732-1","article-title":"Long memory processes and fractional integration in econometrics","volume":"73","author":"Baillie","year":"1996","journal-title":"J. Econometrics"},{"key":"10.1016\/j.jcp.2013.09.041_br0060","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.63.046118","article-title":"Fractional Fokker\u2013Planck equation, solution, and application","volume":"63","author":"Barkai","year":"2001","journal-title":"Phys. Rev. E."},{"key":"10.1016\/j.jcp.2013.09.041_br0070","series-title":"An Introduction to Fractional Calculus","doi-asserted-by":"crossref","DOI":"10.1142\/9789812817747_0001","author":"Butzer","year":"2000"},{"key":"10.1016\/j.jcp.2013.09.041_br0080","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1006\/jcph.1996.0234","article-title":"Spectral methods on arbitrary grids","volume":"129","author":"Carpenter","year":"1996","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0090","doi-asserted-by":"crossref","first-page":"1743","DOI":"10.1016\/j.jcp.2011.11.008","article-title":"Crank\u2013Nicolson method for the fractional diffusion equation with the Riesz fractional derivative","volume":"231","author":"\u00c7elik","year":"2012","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0110","doi-asserted-by":"crossref","first-page":"1740","DOI":"10.1137\/090771715","article-title":"Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation","volume":"32","author":"Chen","year":"2010","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2013.09.041_br0120","series-title":"Functional Fractional Calculus for System Identification and Controls","author":"Das","year":"2008"},{"key":"10.1016\/j.jcp.2013.09.041_br0130","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1137\/080714130","article-title":"Finite element method for the space and time fractional Fokker\u2013Planck equation","volume":"47","author":"Deng","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2013.09.041_br0150","series-title":"Computational Fluid Dynamics, Reaction Engineering and Molecular Properties","first-page":"217","article-title":"On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity","volume":"vol. II","author":"Diethelm","year":"1999"},{"key":"10.1016\/j.jcp.2013.09.041_br0160","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1137\/S1064827594268488","article-title":"A stable penalty method for the compressible Navier\u2013Stokes equations. I. Open boundary conditions","volume":"17","author":"Hesthaven","year":"1996","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2013.09.041_br0180","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/S0168-9274(99)00068-9","article-title":"Spectral penalty methods","volume":"33","author":"Hesthaven","year":"2000","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2013.09.041_br0190","article-title":"Spectral Methods for Time-Dependent Problems","volume":"vol. 21","author":"Hesthaven","year":"2007"},{"key":"10.1016\/j.jcp.2013.09.041_br0200","series-title":"Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications","author":"Hesthaven","year":"2008"},{"key":"10.1016\/j.jcp.2013.09.041_br0210","series-title":"An Introduction to the Fractional Calculus and Fractional Differential Equations","author":"Kenneth","year":"1993"},{"key":"10.1016\/j.jcp.2013.09.041_br0220","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.jcp.2004.11.025","article-title":"The accuracy and stability of an implicit solution method for the fractional diffusion equation","volume":"205","author":"Langlands","year":"2005","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0230","doi-asserted-by":"crossref","first-page":"2108","DOI":"10.1137\/080718942","article-title":"A space\u2013time spectral method for the time fractional diffusion equation","volume":"47","author":"Li","year":"2009","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2013.09.041_br0240","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1016\/j.jcp.2007.02.001","article-title":"Finite difference\/spectral approximations for the time-fractional diffusion equation","volume":"225","author":"Lin","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0250","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.cam.2003.09.028","article-title":"Numerical solution of the fractional advection\u2013dispersion equation","volume":"166","author":"Liu","year":"2004","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jcp.2013.09.041_br0260","series-title":"Fractals and Fractional Calculus in Continuum Mechanics","first-page":"291","article-title":"Fractional calculus: Some basic problems in continuum and statistical mechanics","author":"Mainardi","year":"1997"},{"key":"10.1016\/j.jcp.2013.09.041_br0270","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1088\/0305-4470\/37\/31\/R01","article-title":"The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics","volume":"37","author":"Metzler","year":"2004","journal-title":"J. Phys. A"},{"key":"10.1016\/j.jcp.2013.09.041_br0280","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0370-1573(00)00070-3","article-title":"The random walk\u02bcs guide to anomalous diffusion: A fractional dynamics approach","volume":"339","author":"Metzler","year":"2000","journal-title":"Phys. Rep."},{"key":"10.1016\/j.jcp.2013.09.041_br0290","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.cam.2004.01.033","article-title":"Finite difference approximations for fractional advection-dispersion flow equations","volume":"172","author":"Meerschaert","year":"2004","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jcp.2013.09.041_br0300","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.jcp.2005.05.017","article-title":"Finite difference methods for two-dimensional fractional dispersion equation","volume":"211","author":"Meerschaert","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0310","series-title":"Fractional Differential Equations","author":"Podlubny","year":"1999"},{"key":"10.1016\/j.jcp.2013.09.041_br0320","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1115\/1.3101682","article-title":"Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids","volume":"50","author":"Rossikhin","year":"1997","journal-title":"Appl. Mech. Rev."},{"key":"10.1016\/j.jcp.2013.09.041_br0330","doi-asserted-by":"crossref","first-page":"1326","DOI":"10.1016\/j.camwa.2009.07.006","article-title":"A new operational matrix for solving fractional-order differential equations","volume":"59","author":"Saadatmandia","year":"2010","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2013.09.041_br0340","doi-asserted-by":"crossref","first-page":"850","DOI":"10.1093\/imamat\/hxn033","article-title":"The fundamental solution and numerical solution of the Riesz fractional advection\u2013dispersion equation","volume":"73","author":"Shen","year":"2008","journal-title":"IMA J. Appl. Math."},{"key":"10.1016\/j.jcp.2013.09.041_br0350","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1016\/j.camwa.2011.04.015","article-title":"Numerical approximations for fractional diffusion equations via splines","volume":"62","author":"Sousa","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2013.09.041_br0360","series-title":"An Introduction to Numerical Analysis","author":"S\u00fcli","year":"2003"},{"key":"10.1016\/j.jcp.2013.09.041_br0370","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.jcp.2005.08.008","article-title":"A second-order accurate numerical approximation for the fractional diffusion equation","volume":"213","author":"Tadjeran","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0380","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1016\/j.jcp.2006.05.030","article-title":"A second-order accurate numerical method for the two-dimensional fractional diffusion equation","volume":"220","author":"Tadjeran","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0390","doi-asserted-by":"crossref","first-page":"7830","DOI":"10.1016\/j.jcp.2011.07.003","article-title":"An O(Nlog2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations","volume":"230","author":"Wang","year":"2011","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0400","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1137\/030602666","article-title":"An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations","volume":"42","author":"Yuste","year":"2005","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2013.09.041_br0410","doi-asserted-by":"crossref","first-page":"2302","DOI":"10.1137\/100812707","article-title":"Error estimates of Crank\u2013Nicolson type difference schemes for the sub-diffusion equation","volume":"49","author":"Zhang","year":"2011","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2013.09.041_br0420","doi-asserted-by":"crossref","first-page":"6061","DOI":"10.1016\/j.jcp.2011.04.013","article-title":"A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions","volume":"230","author":"Zhao","year":"2011","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2013.09.041_br0430","author":"Zhou"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999113006554?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999113006554?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,5,8]],"date-time":"2020-05-08T23:29:20Z","timestamp":1588980560000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999113006554"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,1]]},"references-count":39,"alternative-id":["S0021999113006554"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2013.09.041","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2014,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Stable multi-domain spectral penalty methods for fractional partial differential equations","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2013.09.041","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}