{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:36:16Z","timestamp":1726263376850},"reference-count":38,"publisher":"Elsevier BV","issue":"2","license":[{"start":{"date-parts":[[2012,1,1]],"date-time":"2012-01-01T00:00:00Z","timestamp":1325376000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004733","name":"Universidade de Macau","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004733","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2012,1]]},"DOI":"10.1016\/j.jcp.2011.10.005","type":"journal-article","created":{"date-parts":[[2011,10,17]],"date-time":"2011-10-17T22:22:49Z","timestamp":1318890169000},"page":"693-703","source":"Crossref","is-referenced-by-count":172,"title":["Multigrid method for fractional diffusion equations"],"prefix":"10.1016","volume":"231","author":[{"given":"Hong-Kui","family":"Pang","sequence":"first","affiliation":[]},{"given":"Hai-Wei","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2011.10.005_b0005","doi-asserted-by":"crossref","first-page":"2492","DOI":"10.1109\/TIP.2007.904971","article-title":"Fractional-order anisotropic diffusion for image denoising","volume":"16","author":"Bai","year":"2007","journal-title":"IEEE Trans. Image Proc."},{"key":"10.1016\/j.jcp.2011.10.005_b0010","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1029\/2000WR900031","article-title":"Application of a fractional advection\u2013dispersion equation","volume":"36","author":"Benson","year":"2000","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.jcp.2011.10.005_b0015","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.1029\/2000WR900032","article-title":"The fractional-order governing equation of L\u00e9vy motion","volume":"36","author":"Benson","year":"2000","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.jcp.2011.10.005_b0020","doi-asserted-by":"crossref","first-page":"2212","DOI":"10.1016\/j.camwa.2007.11.012","article-title":"Numerical solutions for fractional reaction\u2013diffusion equations","volume":"55","author":"Beumer","year":"2008","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2011.10.005_b0025","series-title":"A Multigrid Tutorial","author":"Briggs","year":"1987"},{"key":"10.1016\/j.jcp.2011.10.005_b0030","doi-asserted-by":"crossref","first-page":"5096","DOI":"10.1063\/1.1416180","article-title":"Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model","volume":"8","author":"Carreras","year":"2001","journal-title":"Phys. Plasma"},{"key":"10.1016\/j.jcp.2011.10.005_b0035","doi-asserted-by":"crossref","first-page":"516","DOI":"10.1137\/S1064827595293831","article-title":"Multigrid method for ill-conditioned symmetric Toeplitz systems","volume":"19","author":"Chan","year":"1998","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2011.10.005_b0040","series-title":"An Introduction to Iterative Toeplitz Solvers","author":"Chan","year":"2007"},{"key":"10.1016\/j.jcp.2011.10.005_b0045","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1137\/S0036144594276474","article-title":"Conjugate gradient methods for Toeplitz systems","volume":"38","author":"Chan","year":"1996","journal-title":"SIAM Rev."},{"key":"10.1016\/j.jcp.2011.10.005_b0050","doi-asserted-by":"crossref","first-page":"7792","DOI":"10.1016\/j.jcp.2009.07.021","article-title":"Compact finite difference method for the fractional diffusion equation","volume":"228","author":"Cui","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0055","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1137\/080714130","article-title":"Finite element method for the space and time fractional Fokker\u2013Planck equation","volume":"47","author":"Deng","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2011.10.005_b0060","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1137\/050642757","article-title":"Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation","volume":"45","author":"Ervin","year":"2007","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.jcp.2011.10.005_b0065","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/BF02575816","article-title":"Multigrid methods for Toeplitz matrices","volume":"28","author":"Fiorentino","year":"1991","journal-title":"Calcolo"},{"key":"10.1016\/j.jcp.2011.10.005_b0070","first-page":"81","article-title":"Multigrid precodnitioning and Toeplitz matrices","volume":"13","author":"Huckle","year":"2002","journal-title":"ETNA"},{"key":"10.1016\/j.jcp.2011.10.005_b0075","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.jcp.2004.11.025","article-title":"The accuracy and stability of an implicit solution method for the fractional diffusion equation","volume":"205","author":"Langlands","year":"2005","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0080","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1016\/j.jcp.2007.02.001","article-title":"Finite difference\/spectral approximations for the time-fractional diffusion equation","volume":"225","author":"Lin","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0085","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.cam.2003.09.028","article-title":"Numerical solution of the space fractional Fokker\u2013Planck equation","volume":"166","author":"Liu","year":"2004","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jcp.2011.10.005_b0090","series-title":"Fractional Calculus in Bioengineering","author":"Magin","year":"2006"},{"key":"10.1016\/j.jcp.2011.10.005_b0095","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.jcp.2005.05.017","article-title":"Finite difference methods for two-dimensional fractional dispersion equation","volume":"211","author":"Meerschaert","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0100","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.cam.2004.01.033","article-title":"Finite difference approximations for fractional advection\u2013dispersion flow equations","volume":"172","author":"Meerschaert","year":"2004","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.jcp.2011.10.005_b0105","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.apnum.2005.02.008","article-title":"Finite difference approximations for two-sided space-fractional partial differential equations","volume":"56","author":"Meerschaert","year":"2006","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.jcp.2011.10.005_b0110","doi-asserted-by":"crossref","first-page":"1138","DOI":"10.1016\/j.camwa.2008.02.015","article-title":"Implicit finite difference approximation for time fractional diffusion equations","volume":"56","author":"Murio","year":"2008","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2011.10.005_b0115","series-title":"Fractional Differential Equations","author":"Podlubny","year":"1999"},{"key":"10.1016\/j.jcp.2011.10.005_b0120","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1016\/S0378-4371(02)01048-8","article-title":"Waiting-times and returns in high-frequency financial data: an empirical study","volume":"314","author":"Raberto","year":"2002","journal-title":"Phys. A"},{"key":"10.1016\/j.jcp.2011.10.005_b0125","article-title":"Algebraic Multigrid","volume":"vol. 4","author":"Ruge","year":"1987"},{"key":"10.1016\/j.jcp.2011.10.005_b0130","series-title":"Iterative Methods for Sparse Linear Systems","author":"Saad","year":"2003"},{"key":"10.1016\/j.jcp.2011.10.005_b0135","doi-asserted-by":"crossref","first-page":"1100","DOI":"10.1103\/PhysRevLett.58.1100","article-title":"L\u00e9vy dynamics of enhanced diffusion: application to turbulence","volume":"58","author":"Shlesinger","year":"1987","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.jcp.2011.10.005_b0140","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1063\/1.1535007","article-title":"Fractional kinetics","author":"Sokolov","year":"2002","journal-title":"Phys. Today Nov."},{"key":"10.1016\/j.jcp.2011.10.005_b0145","doi-asserted-by":"crossref","first-page":"4038","DOI":"10.1016\/j.jcp.2009.02.011","article-title":"Finite difference approximates for a fractional advection diffusion problem","volume":"228","author":"Sousa","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0150","doi-asserted-by":"crossref","first-page":"4405","DOI":"10.1016\/j.physleta.2009.10.004","article-title":"Finite difference approximations for the fractional advection-diffusion equation","volume":"373","author":"Su","year":"2009","journal-title":"Phys. Lett. A"},{"key":"10.1016\/j.jcp.2011.10.005_b0155","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/S0898-1221(97)00094-1","article-title":"A note on the convergence of the two-grid method for Toeplitz systems","volume":"34","author":"Sun","year":"1997","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.jcp.2011.10.005_b0160","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1023\/A:1021978020255","article-title":"Convergence of the multigrid method for ill-conditioned block Toeplitz systems","volume":"41","author":"Sun","year":"2001","journal-title":"BIT"},{"key":"10.1016\/j.jcp.2011.10.005_b0165","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.jcp.2005.08.008","article-title":"A second-order accurate numerical approximation for the fractional diffusion equation","volume":"213","author":"Tadjeran","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0170","series-title":"Matrix Iterative Analysis","author":"Varga","year":"2000"},{"key":"10.1016\/j.jcp.2011.10.005_b0175","doi-asserted-by":"crossref","first-page":"8095","DOI":"10.1016\/j.jcp.2010.07.011","article-title":"A direct O(Nlog2N) finite difference method for fractional diffusion equations","volume":"229","author":"Wang","year":"2010","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.jcp.2011.10.005_b0180","doi-asserted-by":"crossref","first-page":"810","DOI":"10.1016\/j.advwatres.2010.11.003","article-title":"A fast characteristic finite difference method for fractional advection-diffusion equations","volume":"34","author":"Wang","year":"2011","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.jcp.2011.10.005_b0185","series-title":"An Introduction to Multigrid Methods","author":"Wesseling","year":"1992"},{"key":"10.1016\/j.jcp.2011.10.005_b0190","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.1103\/PhysRevE.48.1683","article-title":"Self-similar transport in incomplete chaos","volume":"48","author":"Zaslavsky","year":"1993","journal-title":"Phys. Rev. E"}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999111005985?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021999111005985?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,4]],"date-time":"2021-04-04T04:51:17Z","timestamp":1617511877000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021999111005985"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,1]]},"references-count":38,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2012,1]]}},"alternative-id":["S0021999111005985"],"URL":"https:\/\/doi.org\/10.1016\/j.jcp.2011.10.005","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2012,1]]}}}