{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T05:10:38Z","timestamp":1726377038544},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Biomedical Informatics"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.jbi.2024.104712","type":"journal-article","created":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T05:04:03Z","timestamp":1724475843000},"page":"104712","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning"],"prefix":"10.1016","volume":"157","author":[{"ORCID":"http:\/\/orcid.org\/0009-0005-2634-3495","authenticated-orcid":false,"given":"Yan","family":"Guo","sequence":"first","affiliation":[]},{"given":"Yongqiang","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Jiawei","family":"Song","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jbi.2024.104712_b1","first-page":"12559","article-title":"Self-supervised graph transformer on large-scale molecular data","volume":"33","author":"Rong","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.jbi.2024.104712_b2","article-title":"Drug discovery and development in the era of artificial intelligence: From machine learning to large language models","volume":"2","author":"Guan","year":"2024","journal-title":"Artif. Intell. Chem."},{"issue":"4","key":"10.1016\/j.jbi.2024.104712_b3","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1007\/s43681-021-00131-7","article-title":"The ethical issues of the application of artificial intelligence in healthcare: a systematic scoping review","volume":"2","author":"Karimian","year":"2022","journal-title":"AI Ethics"},{"issue":"22\u201323","key":"10.1016\/j.jbi.2024.104712_b4","first-page":"5492","article-title":"FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery","volume":"36","author":"Chen","year":"2020","journal-title":"Bioinformatics"},{"key":"10.1016\/j.jbi.2024.104712_b5","series-title":"2021 IEEE\/ACM International Conference on Computer Aided Design","first-page":"1","article-title":"Fl-disco: Federated generative adversarial network for graph-based molecule drug discovery: Special session paper","author":"Manu","year":"2021"},{"key":"10.1016\/j.jbi.2024.104712_b6","series-title":"Artificial Intelligence and Statistics","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","year":"2017"},{"issue":"3","key":"10.1016\/j.jbi.2024.104712_b7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3625558","article-title":"Heterogeneous federated learning: State-of-the-art and research challenges","volume":"56","author":"Ye","year":"2023","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.jbi.2024.104712_b8","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1016\/j.omtn.2023.02.019","article-title":"Artificial intelligence for drug discovery: Resources, methods, and applications","volume":"31","author":"Chen","year":"2023","journal-title":"Mol. Ther.-Nucleic Acids"},{"year":"2018","series-title":"MolGAN: An implicit generative model for small molecular graphs","author":"De Cao","key":"10.1016\/j.jbi.2024.104712_b9"},{"issue":"11","key":"10.1016\/j.jbi.2024.104712_b10","doi-asserted-by":"crossref","first-page":"3307","DOI":"10.1021\/acs.jcim.3c00562","article-title":"Exploring the advantages of quantum generative adversarial networks in generative chemistry","volume":"63","author":"Kao","year":"2023","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.jbi.2024.104712_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1758-2946-4-22","article-title":"Towards a universal SMILES representation-a standard method to generate canonical SMILES based on the InChI","volume":"4","author":"O\u2019Boyle","year":"2012","journal-title":"J. Cheminform."},{"issue":"4","key":"10.1016\/j.jbi.2024.104712_b12","doi-asserted-by":"crossref","first-page":"131","DOI":"10.3390\/biom8040131","article-title":"Improving chemical autoencoder latent space and molecular de novo generation diversity with heteroencoders","volume":"8","author":"Bjerrum","year":"2018","journal-title":"Biomolecules"},{"issue":"3","key":"10.1016\/j.jbi.2024.104712_b13","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1038\/s42256-020-0160-y","article-title":"Generative molecular design in low data regimes","volume":"2","author":"Moret","year":"2020","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.jbi.2024.104712_b14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13321-019-0393-0","article-title":"Randomized SMILES strings improve the quality of molecular generative models","volume":"11","author":"Ar\u00fas-Pous","year":"2019","journal-title":"J. Cheminform."},{"year":"2017","series-title":"SMILES enumeration as data augmentation for neural network modeling of molecules","author":"Bjerrum","key":"10.1016\/j.jbi.2024.104712_b15"},{"issue":"1","key":"10.1016\/j.jbi.2024.104712_b16","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1038\/s42004-023-00825-5","article-title":"Hierarchical molecular graph self-supervised learning for property prediction","volume":"6","author":"Zang","year":"2023","journal-title":"Commun. Chem."},{"year":"2023","series-title":"Towards predicting equilibrium distributions for molecular systems with deep learning","author":"Zheng","key":"10.1016\/j.jbi.2024.104712_b17"},{"issue":"4","key":"10.1016\/j.jbi.2024.104712_b18","doi-asserted-by":"crossref","first-page":"688","DOI":"10.1016\/j.cell.2020.01.021","article-title":"A deep learning approach to antibiotic discovery","volume":"180","author":"Stokes","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.jbi.2024.104712_b19","doi-asserted-by":"crossref","unstructured":"H. Abdine, M. Chatzianastasis, C. Bouyioukos, M. Vazirgiannis, Prot2text: Multimodal protein\u2019s function generation with GNNs and transformers, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 10757\u201310765.","DOI":"10.1609\/aaai.v38i10.28948"},{"issue":"6","key":"10.1016\/j.jbi.2024.104712_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patter.2022.100521","article-title":"Federated learning of molecular properties with graph neural networks in a heterogeneous setting","volume":"3","author":"Zhu","year":"2022","journal-title":"Patterns"},{"key":"10.1016\/j.jbi.2024.104712_b21","doi-asserted-by":"crossref","unstructured":"Y. Tan, Y. Liu, G. Long, J. Jiang, Q. Lu, C. Zhang, Federated learning on non-iid graphs via structural knowledge sharing, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 9953\u20139961.","DOI":"10.1609\/aaai.v37i8.26187"},{"key":"10.1016\/j.jbi.2024.104712_b22","first-page":"374","article-title":"Towards federated learning at scale: System design","volume":"1","author":"Bonawitz","year":"2019","journal-title":"Proc. Mach. Learn. Syst."},{"issue":"3","key":"10.1016\/j.jbi.2024.104712_b23","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MSP.2020.2975749","article-title":"Federated learning: Challenges, methods, and future directions","volume":"37","author":"Li","year":"2020","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.jbi.2024.104712_b24","series-title":"2022 IEEE 38th International Conference on Data Engineering","first-page":"965","article-title":"Federated learning on non-iid data silos: An experimental study","author":"Li","year":"2022"},{"issue":"1","key":"10.1016\/j.jbi.2024.104712_b25","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1109\/TPDS.2020.3009406","article-title":"Self-balancing federated learning with global imbalanced data in mobile systems","volume":"32","author":"Duan","year":"2020","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.jbi.2024.104712_b26","doi-asserted-by":"crossref","unstructured":"L. Wang, S. Xu, X. Wang, Q. Zhu, Addressing class imbalance in federated learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 10165\u201310173.","DOI":"10.1609\/aaai.v35i11.17219"},{"year":"2020","series-title":"Tornadoaggregate: Accurate and scalable federated learning via the ring-based architecture","author":"Lee","key":"10.1016\/j.jbi.2024.104712_b27"},{"key":"10.1016\/j.jbi.2024.104712_b28","first-page":"18839","article-title":"Federated graph classification over non-iid graphs","volume":"34","author":"Xie","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.jbi.2024.104712_b29","first-page":"19586","article-title":"An efficient framework for clustered federated learning","volume":"33","author":"Ghosh","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.jbi.2024.104712_b30","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1007\/s11280-022-01046-x","article-title":"Multi-center federated learning: clients clustering for better personalization","volume":"26","author":"Long","year":"2023","journal-title":"World Wide Web"},{"issue":"1","key":"10.1016\/j.jbi.2024.104712_b31","doi-asserted-by":"crossref","first-page":"bbad422","DOI":"10.1093\/bib\/bbad422","article-title":"From intuition to AI: evolution of small molecule representations in drug discovery","volume":"25","author":"McGibbon","year":"2024","journal-title":"Brief. Bioinform."},{"year":"2016","series-title":"Learning in implicit generative models","author":"Mohamed","key":"10.1016\/j.jbi.2024.104712_b32"},{"key":"10.1016\/j.jbi.2024.104712_b33","article-title":"Convolutional networks on graphs for learning molecular fingerprints","volume":"28","author":"Duvenaud","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.jbi.2024.104712_b34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13321-015-0069-3","article-title":"Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?","volume":"7","author":"Bajusz","year":"2015","journal-title":"J. Cheminform."},{"issue":"3","key":"10.1016\/j.jbi.2024.104712_b35","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1021\/ci034243x","article-title":"ESOL: estimating aqueous solubility directly from molecular structure","volume":"44","author":"Delaney","year":"2004","journal-title":"J. Chem. Inf. Comput. Sci."},{"issue":"11","key":"10.1016\/j.jbi.2024.104712_b36","doi-asserted-by":"crossref","first-page":"2864","DOI":"10.1021\/ci300415d","article-title":"Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17","volume":"52","author":"Ruddigkeit","year":"2012","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.jbi.2024.104712_b37","doi-asserted-by":"crossref","DOI":"10.3389\/fphar.2020.565644","article-title":"Molecular sets (MOSES): a benchmarking platform for molecular generation models","volume":"11","author":"Polykovskiy","year":"2020","journal-title":"Front. Pharmacol."}],"container-title":["Journal of Biomedical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1532046424001308?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1532046424001308?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T04:23:02Z","timestamp":1726374182000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1532046424001308"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":37,"alternative-id":["S1532046424001308"],"URL":"https:\/\/doi.org\/10.1016\/j.jbi.2024.104712","relation":{},"ISSN":["1532-0464"],"issn-type":[{"type":"print","value":"1532-0464"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning","name":"articletitle","label":"Article Title"},{"value":"Journal of Biomedical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jbi.2024.104712","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"104712"}}