{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:01:26Z","timestamp":1740106886472,"version":"3.37.3"},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"vor","delay-in-days":366,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62276043"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["DUT22ZD205"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Biomedical Informatics"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.jbi.2023.104503","type":"journal-article","created":{"date-parts":[[2023,9,29]],"date-time":"2023-09-29T16:28:14Z","timestamp":1696004894000},"page":"104503","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Hyperbolic hierarchical knowledge graph embeddings for biological entities"],"prefix":"10.1016","volume":"147","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-6484-0998","authenticated-orcid":false,"given":"Nan","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6186-2024","authenticated-orcid":false,"given":"Zhihao","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yumeng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hongfei","family":"Lin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"18","key":"10.1016\/j.jbi.2023.104503_b1","doi-asserted-by":"crossref","first-page":"2971","DOI":"10.1093\/bioinformatics\/btab193","article-title":"Hig2vec: hierarchical representations of gene ontology and genes in the poincar\u00e9 ball","volume":"37","author":"Kim","year":"2021","journal-title":"Bioinformatics"},{"issue":"D1","key":"10.1016\/j.jbi.2023.104503_b2","doi-asserted-by":"crossref","first-page":"D330","DOI":"10.1093\/nar\/gky1055","article-title":"The gene ontology resource: 20 years and still GOing strong","volume":"47","author":"Gene Ontology Consortium","year":"2019","journal-title":"Nucleic Acids Res."},{"issue":"18","key":"10.1016\/j.jbi.2023.104503_b3","doi-asserted-by":"crossref","first-page":"3710","DOI":"10.1093\/bioinformatics\/bth456","article-title":"GO:: TermFinder-open source software for accessing gene ontology information and finding significantly enriched Gene ontology terms associated with a list of genes","volume":"20","author":"Boyle","year":"2004","journal-title":"Bioinformatics"},{"year":"2019","series-title":"El embeddings: Geometric construction of models for the description logic el++","author":"Kulmanov","key":"10.1016\/j.jbi.2023.104503_b4"},{"issue":"13","key":"10.1016\/j.jbi.2023.104503_b5","doi-asserted-by":"crossref","first-page":"i52","DOI":"10.1093\/bioinformatics\/bty259","article-title":"Onto2vec: joint vector-based representation of biological entities and their ontology-based annotations","volume":"34","author":"Smaili","year":"2018","journal-title":"Bioinformatics"},{"key":"10.1016\/j.jbi.2023.104503_b6","first-page":"26","article-title":"Translating embeddings for modeling multi-relational data","author":"Bordes","year":"2013","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.jbi.2023.104503_b7","doi-asserted-by":"crossref","unstructured":"Z. Wang, J. Zhang, J. Feng, et al., Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 28, 2014, no. 1.","DOI":"10.1609\/aaai.v28i1.8870"},{"key":"10.1016\/j.jbi.2023.104503_b8","doi-asserted-by":"crossref","unstructured":"Y. Lin, Z. Liu, M. Sun, et al., Learning entity and relation embeddings for knowledge graph completion, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.","DOI":"10.1609\/aaai.v29i1.9491"},{"year":"2019","series-title":"Rotate: Knowledge graph embedding by relational rotation in complex space","author":"Sun","key":"10.1016\/j.jbi.2023.104503_b9"},{"issue":"17","key":"10.1016\/j.jbi.2023.104503_b10","doi-asserted-by":"crossref","first-page":"2723","DOI":"10.1093\/bioinformatics\/btx275","article-title":"Neuro-symbolic representation learning on biological knowledge graphs","volume":"33","author":"Alshahrani","year":"2017","journal-title":"Bioinformatics"},{"issue":"17","key":"10.1016\/j.jbi.2023.104503_b11","doi-asserted-by":"crossref","first-page":"i901","DOI":"10.1093\/bioinformatics\/bty559","article-title":"Semantic disease gene embeddings (smudge): phenotype-based disease gene prioritization without phenotypes","volume":"34","author":"Alshahrani","year":"2018","journal-title":"Bioinformatics"},{"year":"2020","series-title":"Low-dimensional hyperbolic knowledge graph embeddings","author":"Chami","key":"10.1016\/j.jbi.2023.104503_b12"},{"key":"10.1016\/j.jbi.2023.104503_b13","doi-asserted-by":"crossref","unstructured":"B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701\u2013710.","DOI":"10.1145\/2623330.2623732"},{"issue":"8","key":"10.1016\/j.jbi.2023.104503_b14","doi-asserted-by":"crossref","first-page":"1156","DOI":"10.1093\/bioinformatics\/btaa913","article-title":"A representation model for biological entities by fusing structured axioms with unstructured texts","volume":"37","author":"Lou","year":"2021","journal-title":"Bioinformatics"},{"issue":"5","key":"10.1016\/j.jbi.2023.104503_b15","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbac318","article-title":"Learning representations for gene ontology terms by jointly encoding graph structure and textual node descriptors","volume":"23","author":"Zhao","year":"2022","journal-title":"Brief. Bioinform."},{"issue":"12","key":"10.1016\/j.jbi.2023.104503_b16","doi-asserted-by":"crossref","first-page":"2133","DOI":"10.1093\/bioinformatics\/bty933","article-title":"Opa2vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction","volume":"35","author":"Smaili","year":"2019","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.jbi.2023.104503_b17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-015-0456-9","article-title":"Aber-OWL: a framework for ontology-based data access in biology","volume":"16","author":"Hoehndorf","year":"2015","journal-title":"BMC Bioinform."},{"issue":"5","key":"10.1016\/j.jbi.2023.104503_b18","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1016\/j.ajhg.2008.09.017","article-title":"The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease","volume":"83","author":"Robinson","year":"2008","journal-title":"Am. J. Hum. Genet."},{"key":"10.1016\/j.jbi.2023.104503_b19","first-page":"32","article-title":"Hyperbolic graph convolutional neural networks","author":"Chami","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.jbi.2023.104503_b20","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1090\/S0002-9904-1973-13149-0","article-title":"A comprehensive introduction to differential geometry","volume":"79","author":"Spivak","year":"1973","journal-title":"Bull. Amer. Math. Soc."},{"key":"10.1016\/j.jbi.2023.104503_b21","series-title":"Revised","article-title":"An introduction to differentiable manifolds and Riemannian geometry","author":"Boothby","year":"2003"},{"key":"10.1016\/j.jbi.2023.104503_b22","first-page":"31","article-title":"Hyperbolic neural networks","author":"Ganea","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.jbi.2023.104503_b23","first-page":"32","article-title":"Multi-relational poincar\u00e9 graph embeddings","author":"Balazevic","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"D1","key":"10.1016\/j.jbi.2023.104503_b24","doi-asserted-by":"crossref","first-page":"D607","DOI":"10.1093\/nar\/gky1131","article-title":"STRING v11: protein\u2013protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets","volume":"47","author":"Szklarczyk","year":"2019","journal-title":"Nucleic Acids Res."},{"issue":"1","key":"10.1016\/j.jbi.2023.104503_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13326-015-0009-1","article-title":"Expanding the mammalian phenotype ontology to support automated exchange of high throughput mouse phenotyping data generated by large-scale mouse knockout screens","volume":"6","author":"Smith","year":"2015","journal-title":"J. Biomed. Semant."},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.jbi.2023.104503_b26"},{"issue":"3","key":"10.1016\/j.jbi.2023.104503_b27","first-page":"1","article-title":"Using the roc curve to measure association and evaluate prediction accuracy for a binary outcome","volume":"5","author":"Yin","year":"2017","journal-title":"Biom. Biostat. Int. J."},{"issue":"1","key":"10.1016\/j.jbi.2023.104503_b28","first-page":"1","article-title":"DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques","volume":"12","author":"A","year":"2020","journal-title":"J. Cheminform."},{"issue":"1","key":"10.1016\/j.jbi.2023.104503_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-021-04327-w","article-title":"DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding","volume":"22","author":"Yue","year":"2021","journal-title":"BMC Bioinform."},{"key":"10.1016\/j.jbi.2023.104503_b30","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/978-1-4939-3167-5_2","article-title":"UniProtKB\/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view","author":"Boutet","year":"2016","journal-title":"Plant Bioinform.: Methods Protoc."},{"key":"10.1016\/j.jbi.2023.104503_b31","first-page":"1","article-title":"PubMed: the bibliographic database","volume":"2","author":"Canese","year":"2013","journal-title":"NCBI Handb."}],"container-title":["Journal of Biomedical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1532046423002241?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1532046423002241?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T00:46:02Z","timestamp":1730508362000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1532046423002241"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":31,"alternative-id":["S1532046423002241"],"URL":"https:\/\/doi.org\/10.1016\/j.jbi.2023.104503","relation":{},"ISSN":["1532-0464"],"issn-type":[{"type":"print","value":"1532-0464"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hyperbolic hierarchical knowledge graph embeddings for biological entities","name":"articletitle","label":"Article Title"},{"value":"Journal of Biomedical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jbi.2023.104503","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"104503"}}