{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T18:12:17Z","timestamp":1719943937519},"reference-count":107,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004897","name":"European Organisation for Research and Treatment of Cancer","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004897","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Biomedical Informatics"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.jbi.2021.103694","type":"journal-article","created":{"date-parts":[[2021,2,3]],"date-time":"2021-02-03T07:16:43Z","timestamp":1612336603000},"page":"103694","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A neuro evolutionary algorithm for patient calibrated prediction of survival in Glioblastoma patients"],"prefix":"10.1016","volume":"115","author":[{"given":"Amir","family":"Ebrahimi Zade","sequence":"first","affiliation":[]},{"given":"Seyedhamidreza","family":"Shahabi Haghighi","sequence":"additional","affiliation":[]},{"given":"M.","family":"Soltani","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0005","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1111\/j.1365-2184.2009.00613.x","article-title":"Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical model","volume":"42","author":"Eikenberry","year":"2009","journal-title":"Cell Prolif."},{"issue":"9","key":"10.1016\/j.jbi.2021.103694_b0010","doi-asserted-by":"crossref","first-page":"1255","DOI":"10.1093\/neuonc\/nou044","article-title":"Phase II trial of 7 days on\/7 days off temozolmide for recurrent high-grade glioma","volume":"16","author":"Han","year":"2014","journal-title":"Neuro-Oncol."},{"issue":"5","key":"10.1016\/j.jbi.2021.103694_b0015","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1016\/S1470-2045(09)70025-7","article-title":"Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial","volume":"10","author":"Stupp","year":"2009","journal-title":"Lancet Oncol."},{"issue":"5","key":"10.1016\/j.jbi.2021.103694_b0020","doi-asserted-by":"crossref","first-page":"20160039","DOI":"10.1098\/rsfs.2016.0039","article-title":"Multimodality imaging and mathematical modelling of drug delivery to glioblastomas","volume":"6","author":"Boujelben","year":"2016","journal-title":"Interf. focus"},{"issue":"11","key":"10.1016\/j.jbi.2021.103694_b0025","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0079115","article-title":"Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma","volume":"8","author":"Corwin","year":"2013","journal-title":"PLoS ONE"},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0030","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1038\/sj.bjc.6600021","article-title":"Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy","volume":"86","author":"Swanson","year":"2002","journal-title":"Br. J. Cancer"},{"issue":"10","key":"10.1016\/j.jbi.2021.103694_b0035","doi-asserted-by":"crossref","first-page":"4502","DOI":"10.1158\/0008-5472.CAN-08-3884","article-title":"Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas","volume":"69","author":"Szeto","year":"2009","journal-title":"Cancer Res."},{"key":"10.1016\/j.jbi.2021.103694_b0040","doi-asserted-by":"crossref","unstructured":"Stevens, M.F., J.A. Hickman, R. Stone, N.W. Gibson, G.U. Baig, E. Lunt, and C.G. Newton, Antitumour imidazotetrazines. 1. Synthesis and chemistry of 8-carbamoyl-3-(2-chloroethyl) imidazo [5, 1-d]-1, 2, 3, 5-tetrazin-4 (3H)-one, a novel broad-spectrum antitumor agent. Journal of medicinal chemistry, 1984. 27(2): p. 196-201.","DOI":"10.1021\/jm00368a016"},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0045","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/S0305-7372(97)90019-0","article-title":"Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials","volume":"23","author":"Newlands","year":"1997","journal-title":"Cancer Treat. Rev."},{"issue":"2","key":"10.1016\/j.jbi.2021.103694_b0050","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1634\/theoncologist.5-2-144","article-title":"Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma","volume":"5","author":"Agarwala","year":"2000","journal-title":"Oncologist"},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0055","doi-asserted-by":"crossref","first-page":"55","DOI":"10.2165\/00024669-200201010-00006","article-title":"Temozolomide","volume":"1","author":"Darkes","year":"2002","journal-title":"American J. Cancer"},{"issue":"8","key":"10.1016\/j.jbi.2021.103694_b0060","doi-asserted-by":"crossref","first-page":"1467","DOI":"10.1109\/TBME.2006.873761","article-title":"A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: the paradigm of glioblastoma multiforme treated by temozolomide","volume":"53","author":"Stamatakos","year":"2006","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.jbi.2021.103694_b0065","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1159\/000085575","article-title":"The role of radio-and chemotherapy in glioblastoma","volume":"28","author":"Stupp","year":"2005","journal-title":"Oncol. Res. Treat."},{"issue":"10","key":"10.1016\/j.jbi.2021.103694_b0070","doi-asserted-by":"crossref","first-page":"2372","DOI":"10.1200\/JCO.2005.00.331","article-title":"Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme","volume":"23","author":"Athanassiou","year":"2005","journal-title":"J. Clin. Oncol."},{"issue":"2","key":"10.1016\/j.jbi.2021.103694_b0075","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1093\/neuonc\/nos295","article-title":"Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma","volume":"15","author":"Omuro","year":"2012","journal-title":"Neuro-Oncol."},{"issue":"12","key":"10.1016\/j.jbi.2021.103694_b0080","doi-asserted-by":"crossref","first-page":"2051","DOI":"10.1200\/JCO.2009.26.5520","article-title":"Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study","volume":"28","author":"Perry","year":"2010","journal-title":"J. Clin. Oncol."},{"issue":"7","key":"10.1016\/j.jbi.2021.103694_b0085","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1093\/neuonc\/not040","article-title":"Phase 2 study of dose-intense temozolomide in recurrent glioblastoma","volume":"15","author":"Norden","year":"2013","journal-title":"Neuro-Oncol."},{"issue":"18_suppl","key":"10.1016\/j.jbi.2021.103694_b0090","doi-asserted-by":"crossref","DOI":"10.1200\/jco.2007.25.18_suppl.2032","article-title":"One week on\/one week off regimen of temozolomide: Phase II trial in recurrent glioma","volume":"25","author":"Wick","year":"2007","journal-title":"J. Clin. Oncol."},{"issue":"22","key":"10.1016\/j.jbi.2021.103694_b0095","doi-asserted-by":"crossref","first-page":"3357","DOI":"10.1200\/JCO.2007.10.7722","article-title":"Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma","volume":"25","author":"Wick","year":"2007","journal-title":"J. Clin. Oncol."},{"key":"10.1016\/j.jbi.2021.103694_b0100","doi-asserted-by":"crossref","unstructured":"Penas-Prado, M., K.R. Hess, M.J. Fisch, L.W. Lagrone, M.D. Groves, V.A. Levin, J.F. De Groot, V.K. Puduvalli, H. Colman, G. Volas-Redd, P. Giglio, C.A. Conrad, M.E. Salacz, J.D. Floyd, M.E. Loghin, S.H. Hsu, J. Gonzalez, E.L. Chang, S.Y. Woo, A. Mahajan, K.D. Aldape, W.K.A. Yung, M.R. Gilbert, o.b.o.t.M.A.C.C.O. Program, and t.B.T.T. Collaborative, Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and\/or thalidomide for glioblastoma. Neuro-Oncology, 2014. 17(2): p. 266-273.","DOI":"10.1093\/neuonc\/nou155"},{"issue":"26","key":"10.1016\/j.jbi.2021.103694_b0105","doi-asserted-by":"crossref","first-page":"4127","DOI":"10.1200\/JCO.2007.11.8554","article-title":"Chemoradiotherapy in Malignant Glioma: Standard of Care and Future Directions","volume":"25","author":"Stupp","year":"2007","journal-title":"J. Clin. Oncol."},{"issue":"15","key":"10.1016\/j.jbi.2021.103694_b0110","doi-asserted-by":"crossref","first-page":"4738","DOI":"10.1158\/1078-0432.CCR-06-0596","article-title":"Temozolomide-Mediated Radiation Enhancement in Glioblastoma: A Report on Underlying Mechanisms","volume":"12","author":"Chakravarti","year":"2006","journal-title":"Clin. Cancer Res."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0115","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1146\/annurev-pharmtox-010617-052446","article-title":"Precision Medicine Is Not Just Genomics: The Right Dose for Every Patient","volume":"58","author":"Peck","year":"2018","journal-title":"Annu. Rev. Pharmacol. Toxicol."},{"issue":"2","key":"10.1016\/j.jbi.2021.103694_b0125","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1227\/NEU.0000000000000766","article-title":"The effect of timing of concurrent chemoradiation in patients with newly diagnosed glioblastoma","volume":"77","author":"Han","year":"2015","journal-title":"Neurosurgery"},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0130","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/S0010-4825(00)00032-9","article-title":"Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK\u2013PD model","volume":"31","author":"Barbolosi","year":"2001","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.jbi.2021.103694_b0135","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.semcancer.2014.04.001","article-title":"Simulating cancer growth with multiscale agent-based modeling","volume":"30","author":"Wang","year":"2015","journal-title":"Semin. Cancer Biol."},{"key":"10.1016\/j.jbi.2021.103694_b0140","doi-asserted-by":"crossref","unstructured":"Gevertz, J.L., Computational modeling of tumor response to vascular-targeting therapies\u2014part I: validation. Computational and mathematical methods in medicine, 2011. 2011.","DOI":"10.1155\/2011\/830515"},{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0145","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1038\/nrclinonc.2015.204","article-title":"Computational oncology [mdash] mathematical modelling of drug regimens for precision medicine","volume":"13","author":"Barbolosi","year":"2016","journal-title":"Nat. Rev. Clin. Oncol."},{"key":"10.1016\/j.jbi.2021.103694_b0150","doi-asserted-by":"crossref","unstructured":"Cristini, V. and J. Lowengrub, Multiscale Modeling of Cancer. An Integrated Experimental and Mathematical Modeling Approach. 2010: Cambridge University Press.","DOI":"10.1017\/CBO9780511781452"},{"key":"10.1016\/j.jbi.2021.103694_b0155","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1038\/ncponc1155","article-title":"Mechanisms of Disease: temozolomide and glioblastoma\u2014look to the future","volume":"5","author":"Mrugala","year":"2008","journal-title":"Nat. Clin. Pract. Oncol."},{"issue":"10","key":"10.1016\/j.jbi.2021.103694_b0160","doi-asserted-by":"crossref","first-page":"987","DOI":"10.1056\/NEJMoa043330","article-title":"Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma","volume":"352","author":"Stupp","year":"2005","journal-title":"N. Engl. J. Med."},{"issue":"18_suppl","key":"10.1016\/j.jbi.2021.103694_b0165","doi-asserted-by":"crossref","DOI":"10.1200\/jco.2007.25.18_suppl.2031","article-title":"A randomized phase II trial of concurrent temozolomide (TMZ) and radiotherapy (RT) followed by dose dense compared to metronomic TMZ and maintenance cis-retinoic acid for patients with newly diagnosed glioblastoma multiforme (GBM)","volume":"25","author":"Sul","year":"2007","journal-title":"J. Clin. Oncol."},{"issue":"9","key":"10.1016\/j.jbi.2021.103694_b0170","doi-asserted-by":"crossref","first-page":"1155","DOI":"10.1038\/sj.bjc.6603376","article-title":"Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO)","volume":"95","author":"Brandes","year":"2006","journal-title":"Br. J. Cancer"},{"issue":"14","key":"10.1016\/j.jbi.2021.103694_b0175","doi-asserted-by":"crossref","first-page":"2335","DOI":"10.1016\/j.ejca.2006.03.023","article-title":"Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours","volume":"42","author":"Baruchel","year":"2006","journal-title":"Eur. J. Cancer"},{"issue":"21","key":"10.1016\/j.jbi.2021.103694_b0180","doi-asserted-by":"crossref","first-page":"R344","DOI":"10.1088\/0031-9155\/61\/21\/R344","article-title":"Methodologies in the modeling of combined chemo-radiation treatments","volume":"61","author":"Grassberger","year":"2016","journal-title":"Phys. Med. Biol."},{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0185","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1016\/j.jtbi.2006.07.002","article-title":"Modeling the effects of vasculature evolution on early brain tumor growth","volume":"243","author":"Gevertz","year":"2006","journal-title":"J. Theor. Biol."},{"key":"10.1016\/j.jbi.2021.103694_b0190","doi-asserted-by":"crossref","DOI":"10.1186\/1471-2105-13-218","article-title":"Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis","volume":"13","author":"Sun","year":"2012","journal-title":"BMC Bioinf."},{"key":"10.1016\/j.jbi.2021.103694_b0195","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.jtbi.2012.02.002","article-title":"Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic predictions of clinical progression","volume":"301","author":"Macklin","year":"2012","journal-title":"J. Theor. Biol."},{"key":"10.1016\/j.jbi.2021.103694_b0200","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.cmpb.2016.08.011","article-title":"Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression","volume":"136","author":"Malekian","year":"2016","journal-title":"Comput. Meth. Prog. Biomed."},{"key":"10.1016\/j.jbi.2021.103694_b0205","doi-asserted-by":"crossref","DOI":"10.3389\/fonc.2019.00768","article-title":"Artificial Intelligence in the Management of Glioma: Era of Personalized Medicine","volume":"9","author":"Sotoudeh","year":"2019","journal-title":"Front. Oncol."},{"issue":"1046","key":"10.1016\/j.jbi.2021.103694_b0210","article-title":"Machine Learning Models for Multiparametric Glioma Grading With Quantitative Result Interpretations","volume":"12","author":"Wang","year":"2019","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.jbi.2021.103694_b0215","doi-asserted-by":"crossref","first-page":"804","DOI":"10.3389\/fnins.2018.00804","article-title":"Glioma grading on conventional MR images: a deep learning study with transfer learning","volume":"12","author":"Yang","year":"2018","journal-title":"Front. Neurosci."},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0220","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1007\/s00432-018-2787-1","article-title":"Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas","volume":"145","author":"Wu","year":"2019","journal-title":"J. Cancer Res. Clin. Oncol."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0225","first-page":"1","article-title":"Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma","volume":"7","author":"Li","year":"2017","journal-title":"Sci. Rep."},{"issue":"11","key":"10.1016\/j.jbi.2021.103694_b0230","doi-asserted-by":"crossref","DOI":"10.1097\/RLI.0000000000000484","article-title":"Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine","volume":"53","author":"Perkuhn","year":"2018","journal-title":"Invest. Radiol."},{"key":"10.1016\/j.jbi.2021.103694_b0235","doi-asserted-by":"crossref","unstructured":"Eijgelaar, R.S., M. Visser, D.M.J. M\u00fcller, F. Barkhof, H. Vrenken, M.v. Herk, L. Bello, M.C. Nibali, M. Rossi, T. Sciortino, M.S. Berger, S. Hervey-Jumper, B. Kiesel, G. Widhalm, J. Furtner, P.A.J.T. Robe, E. Mandonnet, P.C.D.W. Hamer, J.C.d. Munck, and M.G. Witte, Robust Deep Learning\u2013based Segmentation of Glioblastoma on Routine Clinical MRI Scans Using Sparsified Training. Radiology: Artificial Intelligence, 2020. 2(5): p. e190103.","DOI":"10.1148\/ryai.2020190103"},{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0240","doi-asserted-by":"crossref","first-page":"920","DOI":"10.3390\/s19040920","article-title":"Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain","volume":"19","author":"Fabelo","year":"2019","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0245","doi-asserted-by":"crossref","first-page":"E4","DOI":"10.3171\/2015.11.FOCUS15542","article-title":"Factors triggering an additional resection and determining residual tumor volume on intraoperative MRI: analysis from a prospective single-center registry of supratentorial gliomas","volume":"40","author":"Scherer","year":"2016","journal-title":"Neurosurg Focus"},{"key":"10.1016\/j.jbi.2021.103694_b0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105443","article-title":"Reinforcement learning for optimal scheduling of Glioblastoma treatment with Temozolomide","author":"Ebrahimi Zade","year":"2020","journal-title":"Comput. Meth. Programs Biomed."},{"key":"10.1016\/j.jbi.2021.103694_b0255","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.matcom.2016.05.008","article-title":"Simulation-based optimization of radiotherapy: Agent-based modeling and reinforcement learning","volume":"133","author":"Jalalimanesh","year":"2017","journal-title":"Math. Comput. Simul"},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0260","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1148\/radiol.14140770","article-title":"A generic support vector machine model for preoperative glioma survival associations","volume":"275","author":"Emblem","year":"2015","journal-title":"Radiology"},{"issue":"6","key":"10.1016\/j.jbi.2021.103694_b0265","doi-asserted-by":"crossref","first-page":"1065","DOI":"10.3174\/ajnr.A2939","article-title":"Survival analysis of patients with high-grade gliomas based on data mining of imaging variables","volume":"33","author":"Zacharaki","year":"2012","journal-title":"AJNR Am. J. Neuroradiol."},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0270","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1093\/neuonc\/nov127","article-title":"Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques","volume":"18","author":"Macyszyn","year":"2016","journal-title":"Neuro-Oncol."},{"key":"10.1016\/j.jbi.2021.103694_b0275","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.jbi.2016.03.020","article-title":"Constraint based temporal event sequence mining for Glioblastoma survival prediction","volume":"61","author":"Malhotra","year":"2016","journal-title":"J. Biomed. Inform."},{"issue":"11","key":"10.1016\/j.jbi.2021.103694_b0280","doi-asserted-by":"crossref","first-page":"3291","DOI":"10.1088\/0031-9155\/52\/11\/023","article-title":"Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy","volume":"52","author":"Powathil","year":"2007","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.jbi.2021.103694_b0285","series-title":"Mathematical Biology","author":"Murray","year":"2002"},{"issue":"10","key":"10.1016\/j.jbi.2021.103694_b0290","doi-asserted-by":"crossref","first-page":"1725","DOI":"10.1016\/0360-3016(79)90553-4","article-title":"An analysis of dose-effect relationship in the radiotherapy of malignant gliomas","volume":"5","author":"Walker","year":"1979","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0295","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1016\/j.jtbi.2009.10.021","article-title":"A mathematical model of brain tumour response to radiotherapy and chemotherapy considering radiobiological aspects","volume":"262","author":"Barazzuol","year":"2010","journal-title":"J. Theor. Biol."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0300","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.jtbi.2006.09.007","article-title":"A mathematical model of the treatment and survival of patients with high-grade brain tumours","volume":"245","author":"Kirkby","year":"2007","journal-title":"J. Theor. Biol."},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0305","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1158\/1078-0432.CCR-07-1856","article-title":"In vitro and in vivo radiosensitization induced by the DNA methylating agent temozolomide","volume":"14","author":"Kil","year":"2008","journal-title":"Clin. Cancer Res."},{"key":"10.1016\/j.jbi.2021.103694_b0310","doi-asserted-by":"crossref","DOI":"10.1007\/BF02618247","article-title":"Cytotoxicity of glucose analogues in V79 multicell spheroids","volume":"15","author":"Sridhar","year":"1979","journal-title":"Vitro"},{"key":"10.1016\/j.jbi.2021.103694_b0315","unstructured":"Chollet, F., Deep Learning with Python. 1st ed. 2018: Manning Publications."},{"key":"10.1016\/j.jbi.2021.103694_b0320","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.patrec.2014.01.008","article-title":"A review of unsupervised feature learning and deep learning for time-series modeling","volume":"42","author":"L\u00e4ngkvist","year":"2014","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.jbi.2021.103694_b0325","unstructured":"Socher, R., J. Pennington, E.H. Huang, A.Y. Ng, and C.D. Manning. Semi-supervised recursive autoencoders for predicting sentiment distributions. in Proceedings of the conference on empirical methods in natural language processing. 2011. Association for Computational Linguistics."},{"key":"10.1016\/j.jbi.2021.103694_b0330","series-title":"Proceedings of ICML workshop on unsupervised and transfer learning","article-title":"unsupervised learning, and deep architectures","author":"Baldi","year":"2012"},{"key":"10.1016\/j.jbi.2021.103694_b0335","first-page":"328","article-title":"Global optimization methods for designing and training feedforward artificial neural networks","volume":"14","author":"Zanchettin","year":"2007","journal-title":"Adv. Neural Networks"},{"key":"10.1016\/j.jbi.2021.103694_b0340","series-title":"Artificial Neural Nets and Genetic Algorithms","article-title":"Searching among search spaces: hastening the genetic evolution of feedforward neural networks","author":"Maniezzo","year":"1993"},{"key":"10.1016\/j.jbi.2021.103694_b0345","unstructured":"Verbancsics, P. and J. Harguess, Generative neuroevolution for deep learning. arXiv preprint arXiv:1312.5355, 2013."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0350","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1038\/s42256-018-0006-z","article-title":"Designing neural networks through neuroevolution","volume":"1","author":"Stanley","year":"2019","journal-title":"Nature Machine Intelligence"},{"issue":"9","key":"10.1016\/j.jbi.2021.103694_b0355","first-page":"50","article-title":"A review on applications of genetic algorithm for artificial neural network","volume":"4","author":"Al Tobi","year":"2016","journal-title":"Int. J. Adv. Comput. Eng. Network."},{"key":"10.1016\/j.jbi.2021.103694_b0360","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.engappai.2017.01.013","article-title":"Metaheuristic design of feedforward neural networks: A review of two decades of research","volume":"60","author":"Ojha","year":"2017","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"6","key":"10.1016\/j.jbi.2021.103694_b0365","doi-asserted-by":"crossref","first-page":"1543","DOI":"10.18576\/amis\/110602","article-title":"Neural networks optimization through genetic algorithm searches: a review","volume":"11","author":"Chiroma","year":"2017","journal-title":"Appl. Math. Inf. Sci"},{"key":"10.1016\/j.jbi.2021.103694_b0370","series-title":"Adaptation in Natural and Artificial Systems","author":"Holland","year":"1992"},{"key":"10.1016\/j.jbi.2021.103694_b0375","doi-asserted-by":"crossref","unstructured":"Arena, P., R. Caponetto, L. Fortuna, and M.G. Xibilia. M. L. P. Optimal Topology via Genetic Algorithms. in International Conference on Artificial Neural Networks & Genetic Algorithms. 1993. Innsbruck, Austria: Springer-Verlag.","DOI":"10.1007\/978-3-7091-7533-0_97"},{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0380","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1007\/s40092-014-0076-4","article-title":"A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments","volume":"10","author":"Ebrahimi Zade","year":"2014","journal-title":"J. Industrial Eng. Int."},{"key":"10.1016\/j.jbi.2021.103694_b0385","article-title":"A comparative analysis of selection schemes used in genetic algorithms","author":"Goldberg","year":"1991","journal-title":"Found. Genetic Algorithms."},{"key":"10.1016\/j.jbi.2021.103694_b0390","unstructured":"Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. Adaptive Computation and Machine Learning series. 2016: The MIT Press."},{"key":"10.1016\/j.jbi.2021.103694_b0395","unstructured":"Patterson, J. and A. Gibson, Deep Learning: A Practitioner's Approach. 1st Edition ed. 2017: O'Reilly Media."},{"key":"10.1016\/j.jbi.2021.103694_b0400","unstructured":"Souza, Y.S.B.K.F.M.S.M.F., Deep Learning: Practical Neural Networks with Java. 2017: Packt Publishing."},{"key":"10.1016\/j.jbi.2021.103694_b0405","doi-asserted-by":"crossref","unstructured":"Bishop, C.M., Neural networks for pattern recognition. 1995: Oxford university press.","DOI":"10.1201\/9781420050646.ptb6"},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0410","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/0360-3016(92)90944-D","article-title":"National Cancer Institute (phase II) study of high-grade glioma treated with accelerated hyperfractionated radiation and iododeoxyuridine: results in anaplastic astrocytoma","volume":"30","author":"Sullivan","year":"1994","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0415","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1023\/A:1006356021734","article-title":"Short-course radiotherapy in elderly and frail patients with glioblastoma multiforme. A phase II study","volume":"44","author":"Jeremic","year":"1999","journal-title":"J. Neurooncol."},{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0420","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.clon.2008.01.006","article-title":"Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle","volume":"20","author":"Swanson","year":"2008","journal-title":"Clin. Oncol."},{"key":"10.1016\/j.jbi.2021.103694_b0425","unstructured":"Swanson, K.R., Mathematical modeling of the growth and control of tumors. 2000."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0430","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jns.2003.06.001","article-title":"Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion","volume":"216","author":"Swanson","year":"2003","journal-title":"J. Neurol. Sci."},{"issue":"24","key":"10.1016\/j.jbi.2021.103694_b0435","doi-asserted-by":"crossref","first-page":"8177","DOI":"10.1158\/1078-0432.CCR-04-1081","article-title":"Hypoxia is important in the biology and aggression of human glial brain tumors","volume":"10","author":"Evans","year":"2004","journal-title":"Clin. Cancer Res."},{"issue":"4","key":"10.1016\/j.jbi.2021.103694_b0440","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/S1052-5149(02)00032-1","article-title":"Importance of hypoxia in the biology and treatment of brain tumors","volume":"12","author":"Knisely","year":"2002","journal-title":"Neuroimaging Clinics"},{"key":"10.1016\/j.jbi.2021.103694_b0445","unstructured":"Hall, E.J. and A.J. Giaccia, Radiobiology for the Radiologist. Vol. 6. 2006: Lippincott Williams & Wilkins."},{"issue":"103","key":"10.1016\/j.jbi.2021.103694_b0450","doi-asserted-by":"crossref","first-page":"20141174","DOI":"10.1098\/rsif.2014.1174","article-title":"A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET","volume":"12","author":"Rockne","year":"2015","journal-title":"J. R. Soc. Interf."},{"issue":"5","key":"10.1016\/j.jbi.2021.103694_b0455","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1001\/jamapsychiatry.2019.3671","article-title":"Establishment of Best Practices for Evidence for Prediction: A Review","volume":"77","author":"Poldrack","year":"2020","journal-title":"JAMA Psychiatry"},{"key":"10.1016\/j.jbi.2021.103694_b0460","doi-asserted-by":"crossref","unstructured":"Kuhn, M. and K. Johnson, Applied predictive modeling. Vol. 26. 2013: Springer.","DOI":"10.1007\/978-1-4614-6849-3"},{"key":"10.1016\/j.jbi.2021.103694_b0465","doi-asserted-by":"crossref","unstructured":"James, G., D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning. Vol. 112. 2013: Springer.","DOI":"10.1007\/978-1-4614-7138-7"},{"key":"10.1016\/j.jbi.2021.103694_b0470","article-title":"The'K'in K-fold Cross Validation","author":"Anguita","year":"2012","journal-title":"ESANN"},{"key":"10.1016\/j.jbi.2021.103694_b0475","unstructured":"Brownlee, J., Deep learning With Python Develop Deep Learning Models on Theano and TensorFlow Using Keras. 2016."},{"key":"10.1016\/j.jbi.2021.103694_b0480","doi-asserted-by":"crossref","unstructured":"Reed, R. and R.J. MarksII, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. 1999: A Bradford Book.","DOI":"10.7551\/mitpress\/4937.001.0001"},{"key":"10.1016\/j.jbi.2021.103694_b0485","unstructured":"Peace, G.S., Taguchi methods: a hands-on approach. 1993: Addison Wesley Publishing Company."},{"key":"10.1016\/j.jbi.2021.103694_b0490","doi-asserted-by":"crossref","unstructured":"Taguchi, G., S. Chowdhury, and Y. Wu, Taguchi's quality engineering handbook. 2005: Wiley.","DOI":"10.1002\/9780470258354"},{"key":"10.1016\/j.jbi.2021.103694_b0495","unstructured":"Roy, R., A Primer on the Taguchi Method. first ed. 1990: Society of Manufacturing Engineers."},{"issue":"8","key":"10.1016\/j.jbi.2021.103694_b0500","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0183810","article-title":"Hybrid multiscale modeling and prediction of cancer cell behavior","volume":"12","author":"Zangooei","year":"2017","journal-title":"PLoS ONE"},{"key":"10.1016\/j.jbi.2021.103694_b0505","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jtbi.2012.05.015","article-title":"Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model","volume":"308","author":"Powathil","year":"2012","journal-title":"J. Theor. Biol."},{"key":"10.1016\/j.jbi.2021.103694_b0510","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.semcancer.2014.02.003","article-title":"Systems oncology: Towards patient-specific treatment regimes informed by multiscale mathematical modelling","volume":"30","author":"Powathil","year":"2015","journal-title":"Semin. Cancer Biol."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0515","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1186\/1745-6150-5-25","article-title":"A theoretical quantitative model for evolution of cancer chemotherapy resistance","volume":"5","author":"Silva","year":"2010","journal-title":"Biology Direct"},{"issue":"7","key":"10.1016\/j.jbi.2021.103694_b0520","doi-asserted-by":"crossref","first-page":"2021","DOI":"10.1016\/j.matcom.2008.09.007","article-title":"Multi-scale, multi-resolution brain cancer modeling","volume":"79","author":"Zhang","year":"2009","journal-title":"Math. Comput. Simul"},{"issue":"3","key":"10.1016\/j.jbi.2021.103694_b0525","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.biosystems.2008.03.002","article-title":"Cross-scale sensitivity analysis of a non-small cell lung cancer model: linking molecular signaling properties to cellular behavior","volume":"92","author":"Wang","year":"2008","journal-title":"Biosystems"},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0530","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1088\/0031-9155\/50\/1\/008","article-title":"Tumour resistance to cisplatin: a modelling approach","volume":"50","author":"Marcu","year":"2005","journal-title":"Phys. Med. Biol."},{"issue":"1","key":"10.1016\/j.jbi.2021.103694_b0535","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1186\/1471-2288-5-14","article-title":"The strengths and limitations of meta-analyses based on aggregate data","volume":"5","author":"Lyman","year":"2005","journal-title":"BMC Med. Res. Method."},{"issue":"6","key":"10.1016\/j.jbi.2021.103694_b0540","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1093\/humupd\/dmq043","article-title":"Individual patient data meta-analysis: a promising approach for evidence synthesis in reproductive medicine","volume":"16","author":"Broeze","year":"2010","journal-title":"Human Reprod. Update"}],"container-title":["Journal of Biomedical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S153204642100023X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S153204642100023X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T12:45:58Z","timestamp":1680525958000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S153204642100023X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":107,"alternative-id":["S153204642100023X"],"URL":"https:\/\/doi.org\/10.1016\/j.jbi.2021.103694","relation":{},"ISSN":["1532-0464"],"issn-type":[{"value":"1532-0464","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A neuro evolutionary algorithm for patient calibrated prediction of survival in Glioblastoma patients","name":"articletitle","label":"Article Title"},{"value":"Journal of Biomedical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jbi.2021.103694","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"103694"}}