{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:00:51Z","timestamp":1740106851114,"version":"3.37.3"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000092","name":"National Library of Medicine","doi-asserted-by":"publisher","award":["R01 LM006910"],"id":[{"id":"10.13039\/100000092","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Biomedical Informatics"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1016\/j.jbi.2018.08.014","type":"journal-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T19:13:11Z","timestamp":1535656391000},"page":"149-159","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Methodological variations in lagged regression for detecting physiologic drug effects in EHR data"],"prefix":"10.1016","volume":"86","author":[{"given":"Matthew E.","family":"Levine","sequence":"first","affiliation":[]},{"given":"David J.","family":"Albers","sequence":"additional","affiliation":[]},{"given":"George","family":"Hripcsak","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0005","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1136\/amiajnl-2012-001145","article-title":"Next-generation phenotyping of electronic health records","volume":"20","author":"Hripcsak","year":"2013","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.jbi.2018.08.014_b0010","first-page":"574","article-title":"Observational health data sciences and informatics (OHDSI): opportunities for observational researchers","volume":"216","author":"Hripcsak","year":"2015","journal-title":"Stud Health Technol. Inform."},{"issue":"2","key":"10.1016\/j.jbi.2018.08.014_b0015","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1197\/jamia.M1074","article-title":"Detecting adverse events using information technology","volume":"10","author":"Bates","year":"2003","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"23","key":"10.1016\/j.jbi.2018.08.014_b0020","doi-asserted-by":"crossref","first-page":"3498","DOI":"10.2174\/1381612822666160509125047","article-title":"Data-driven approach to detect and predict adverse drug reactions","volume":"22","author":"Ho","year":"2016","journal-title":"Curr. Pharm. Des."},{"issue":"Suppl. 1","key":"10.1016\/j.jbi.2018.08.014_b0025","doi-asserted-by":"crossref","first-page":"i144","DOI":"10.1136\/amiajnl-2011-000351","article-title":"Drug side effect extraction from clinical narratives of psychiatry and psychology patients","volume":"18","author":"Sohn","year":"2011","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"5","key":"10.1016\/j.jbi.2018.08.014_b0030","doi-asserted-by":"crossref","first-page":"836","DOI":"10.1136\/amiajnl-2013-001622","article-title":"Comprehensive temporal information detection from clinical text: medical events, time, and TLINK identification","volume":"20","author":"Sohn","year":"2013","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"4","key":"10.1016\/j.jbi.2018.08.014_b0035","doi-asserted-by":"crossref","first-page":"878","DOI":"10.1111\/bcp.12746","article-title":"Systematic review on the prevalence, frequency and comparative value of adverse events data in social media","volume":"80","author":"Golder","year":"2015","journal-title":"Br. J. Clin. Pharmacol."},{"issue":"27","key":"10.1016\/j.jbi.2018.08.014_b0040","doi-asserted-by":"crossref","first-page":"7329","DOI":"10.1073\/pnas.1510502113","article-title":"Characterizing treatment pathways at scale using the OHDSI network","volume":"113","author":"Hripcsak","year":"2016","journal-title":"PNAS"},{"key":"10.1016\/j.jbi.2018.08.014_b0045","unstructured":"M.J. Schuemie, P.B. Ryan, G. Hripcsak, D. Madigan, M.A. Suchard, A systematic approach to improving the reliability and scale of evidence from health care data, arXiv:1803.10791 [stat], 2018."},{"issue":"6","key":"10.1016\/j.jbi.2018.08.014_b0050","doi-asserted-by":"crossref","first-page":"e66341","DOI":"10.1371\/journal.pone.0066341","article-title":"Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data","volume":"8","author":"Lasko","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.jbi.2018.08.014_b0055","doi-asserted-by":"crossref","first-page":"810","DOI":"10.1137\/1.9781611974348.91","article-title":"Learning linear dynamical systems from multivariate time series: a matrix factorization based framework","volume":"2016","author":"Liu","year":"2016","journal-title":"Proc SIAM Int Conf Data Min"},{"key":"10.1016\/j.jbi.2018.08.014_b0060","first-page":"1273","article-title":"Learning adaptive forecasting models from irregularly sampled multivariate clinical data","volume":"2016","author":"Liu","year":"2016","journal-title":"Proc Conf AAAI Artif Intell"},{"key":"10.1016\/j.jbi.2018.08.014_b0065","doi-asserted-by":"crossref","unstructured":"F. Wang, N. Lee, J. Hu, J. Sun, S. Ebadollahi, Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach, in: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, pp. 453\u2013461.","DOI":"10.1145\/2339530.2339605"},{"key":"10.1016\/j.jbi.2018.08.014_b0070","unstructured":"I. Batal, H. Valizadegan, G.F. Cooper, M. Hauskrecht, A pattern mining approach for classifying multivariate temporal data, in: Proceedings (IEEE Int. Conf. Bioinformatics Biomed.), vol. 2011, 2011, pp. 358\u2013365."},{"issue":"3","key":"10.1016\/j.jbi.2018.08.014_b0075","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s10618-009-0152-3","article-title":"Temporal pattern discovery in longitudinal electronic patient records","volume":"20","author":"Nor\u00e9n","year":"2010","journal-title":"Data Min. Knowl. Disc."},{"year":"2009","series-title":"Medical Temporal-knowledge Discovery via Temporal Abstraction","author":"Moskovitch","key":"10.1016\/j.jbi.2018.08.014_b0080"},{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0085","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1007\/s10115-014-0784-5","article-title":"Classification of multivariate time series via temporal abstraction and time intervals mining","volume":"45","author":"Moskovitch","year":"2015","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.jbi.2018.08.014_b0090","unstructured":"M. Ramati, Y. Shahar, Irregular-time Bayesian Networks, in: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Arlington, Virginia, United States, 2010, pp. 484\u2013491."},{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0095","doi-asserted-by":"crossref","first-page":"013111","DOI":"10.1063\/1.3675621","article-title":"\u201cUsing time-delayed mutual information to discover and interpret temporal correlation structure in complex populations","volume":"22","author":"Albers","year":"2012","journal-title":"Chaos: Int. J. Nonlin. Sci."},{"issue":"6","key":"10.1016\/j.jbi.2018.08.014_b0100","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1016\/j.chaos.2012.03.003","article-title":"Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series","volume":"45","author":"Albers","year":"2012","journal-title":"Chaos Solitons Fract."},{"issue":"6","key":"10.1016\/j.jbi.2018.08.014_b0105","doi-asserted-by":"crossref","first-page":"e96443","DOI":"10.1371\/journal.pone.0096443","article-title":"Dynamical phenotyping: using temporal analysis of clinically collected physiologic data to stratify populations","volume":"9","author":"Albers","year":"2014","journal-title":"PLoS One"},{"issue":"12","key":"10.1016\/j.jbi.2018.08.014_b0110","doi-asserted-by":"crossref","first-page":"e48058","DOI":"10.1371\/journal.pone.0048058","article-title":"Population physiology: leveraging electronic health record data to understand human endocrine dynamics","volume":"7","author":"Albers","year":"2012","journal-title":"PLoS One"},{"key":"10.1016\/j.jbi.2018.08.014_b0115","article-title":"High-fidelity phenotyping: richness and freedom from bias","author":"Hripcsak","year":"2017","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"4","key":"10.1016\/j.jbi.2018.08.014_b0120","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1093\/jamia\/ocu051","article-title":"Parameterizing time in electronic health record studies","volume":"22","author":"Hripcsak","year":"2015","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"Suppl. 1","key":"10.1016\/j.jbi.2018.08.014_b0125","doi-asserted-by":"crossref","first-page":"i109","DOI":"10.1136\/amiajnl-2011-000463","article-title":"Exploiting time in electronic health record correlations","volume":"18","author":"Hripcsak","year":"2011","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.jbi.2018.08.014_b0130","unstructured":"M.E. Levine, D.J. Albers, G. Hripcsak, Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data, in:AMIA Annu Symp Proc, vol. 2016, Feb. 2017, pp. 779\u2013788."},{"issue":"e2","key":"10.1016\/j.jbi.2018.08.014_b0135","doi-asserted-by":"crossref","first-page":"e311","DOI":"10.1136\/amiajnl-2013-001922","article-title":"Correlating electronic health record concepts with healthcare process events","volume":"20","author":"Hripcsak","year":"2013","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"Suppl. C","key":"10.1016\/j.jbi.2018.08.014_b0140","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.jbi.2014.03.016","article-title":"Identifying and mitigating biases in EHR laboratory tests","volume":"51","author":"Pivovarov","year":"2014","journal-title":"J. Biomed. Inform."},{"issue":"6","key":"10.1016\/j.jbi.2018.08.014_b0145","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1136\/amiajnl-2013-002592","article-title":"Temporal trends of hemoglobin A1c testing","volume":"21","author":"Pivovarov","year":"2014","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"9","key":"10.1016\/j.jbi.2018.08.014_b0150","doi-asserted-by":"crossref","first-page":"1159","DOI":"10.1016\/j.physleta.2009.12.067","article-title":"A statistical dynamics approach to the study of human health data: resolving population scale diurnal variation in laboratory data","volume":"374","author":"Albers","year":"2010","journal-title":"Phys. Lett. A"},{"year":"2002","series-title":"Statistical Analysis with Missing Data: Little\/Statistical Analysis with Missing Data","author":"Little","key":"10.1016\/j.jbi.2018.08.014_b0155"},{"year":"2010","series-title":"Applied Missing Data Analysis","author":"Enders","key":"10.1016\/j.jbi.2018.08.014_b0160"},{"issue":"9","key":"10.1016\/j.jbi.2018.08.014_b0165","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1109\/PROC.1984.12998","article-title":"Communication in the presence of noise","volume":"72","author":"Shannon","year":"1984","journal-title":"Proc. IEEE"},{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0170","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1145\/584091.584093","article-title":"A mathematical theory of communication","volume":"5","author":"Shannon","year":"2001","journal-title":"SIGMOBILE Mob. Comput. Commun. Rev."},{"year":"2011","series-title":"Understanding Digital Signal Processing","author":"Lyons","key":"10.1016\/j.jbi.2018.08.014_b0175"},{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0180","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1109\/PROC.1978.10837","article-title":"On the use of windows for harmonic analysis with the discrete Fourier transform","volume":"66","author":"Harris","year":"1978","journal-title":"Proc. IEEE"},{"volume":"vol. 2","year":"1994","author":"Hamilton","key":"10.1016\/j.jbi.2018.08.014_b0185"},{"issue":"366","key":"10.1016\/j.jbi.2018.08.014_b0190","doi-asserted-by":"crossref","first-page":"427","DOI":"10.2307\/2286348","article-title":"Distribution of the estimators for autoregressive time series with a unit root","volume":"74","author":"Dickey","year":"1979","journal-title":"J. Am. Stat. Assoc."},{"year":"2015","series-title":"Time Series Analysis: Forecasting and Control","author":"Box","key":"10.1016\/j.jbi.2018.08.014_b0195"},{"issue":"2","key":"10.1016\/j.jbi.2018.08.014_b0200","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/0304-4076(74)90034-7","article-title":"Spurious regressions in econometrics","volume":"2","author":"Granger","year":"1974","journal-title":"J. Econom."},{"issue":"2","key":"10.1016\/j.jbi.2018.08.014_b0205","first-page":"211","article-title":"An analysis of transformations","volume":"26","author":"Box","year":"1964","journal-title":"J. Roy. Stat. Soc. Ser. B (Methodological)"},{"year":"1992","series-title":"Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise","author":"Trees","key":"10.1016\/j.jbi.2018.08.014_b0210"},{"issue":"8","key":"10.1016\/j.jbi.2018.08.014_b0215","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1007\/s40264-014-0189-0","article-title":"Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest","volume":"37","author":"Boyce","year":"2014","journal-title":"Drug Saf."},{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0220","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/aos\/1176344552","article-title":"Bootstrap methods: another look at the jackknife","volume":"7","author":"Efron","year":"1979","journal-title":"Ann. Statist."},{"issue":"3","key":"10.1016\/j.jbi.2018.08.014_b0225","doi-asserted-by":"crossref","first-page":"424","DOI":"10.2307\/1912791","article-title":"Investigating causal relations by econometric models and cross-spectral methods","volume":"37","author":"Granger","year":"1969","journal-title":"Econometrica"},{"key":"10.1016\/j.jbi.2018.08.014_b0230","article-title":"Statistical signal processing","volume":"1","author":"Kay","year":"1993","journal-title":"Estimat. Theory"},{"year":"2011","series-title":"Econometrics","author":"Hayashi","key":"10.1016\/j.jbi.2018.08.014_b0235"},{"issue":"1","key":"10.1016\/j.jbi.2018.08.014_b0240","first-page":"1","article-title":"Hidden in plain sight: bias towards sick patients when sampling patients with sufficient electronic health record data for research","volume":"14","author":"Rusanov","year":"2014","journal-title":"BMC Med. Inf. Decis. Mak."},{"key":"10.1016\/j.jbi.2018.08.014_b0245","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.jbi.2018.01.004","article-title":"Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms","volume":"78","author":"Albers","year":"2018","journal-title":"J. Biomed. Inform."}],"container-title":["Journal of Biomedical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1532046418301734?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1532046418301734?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,8]],"date-time":"2020-11-08T15:01:02Z","timestamp":1604847662000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1532046418301734"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10]]},"references-count":49,"alternative-id":["S1532046418301734"],"URL":"https:\/\/doi.org\/10.1016\/j.jbi.2018.08.014","relation":{},"ISSN":["1532-0464"],"issn-type":[{"type":"print","value":"1532-0464"}],"subject":[],"published":{"date-parts":[[2018,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Methodological variations in lagged regression for detecting physiologic drug effects in EHR data","name":"articletitle","label":"Article Title"},{"value":"Journal of Biomedical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jbi.2018.08.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc.","name":"copyright","label":"Copyright"}]}}