{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,2]],"date-time":"2025-04-02T04:29:50Z","timestamp":1743568190250,"version":"3.37.3"},"reference-count":20,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,2,1]],"date-time":"2016-02-01T00:00:00Z","timestamp":1454284800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100005156","name":"Alexander von Humboldt-Stiftung","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100005156","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002261","name":"Russian Foundation for Basic Research","doi-asserted-by":"publisher","award":["16-01-00308"],"id":[{"id":"10.13039\/501100002261","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003002","name":"Dynasty Foundation","doi-asserted-by":"publisher","award":["2014 SGR 289","MTM 2014-59174-P"],"id":[{"id":"10.13039\/501100003002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003443","name":"Ministry of Education and Science of the Russian Federation","doi-asserted-by":"publisher","award":["1.1333.2014K","5414GZ"],"id":[{"id":"10.13039\/501100003443","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Approximation Theory"],"published-print":{"date-parts":[[2016,2]]},"DOI":"10.1016\/j.jat.2015.10.002","type":"journal-article","created":{"date-parts":[[2015,10,30]],"date-time":"2015-10-30T22:46:04Z","timestamp":1446245164000},"page":"109-118","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in L<\/mml:mi><\/mml:mrow>2<\/mml:mn><\/mml:mrow><\/mml:msup><\/mml:math>"],"prefix":"10.1016","volume":"202","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0866-6598","authenticated-orcid":false,"given":"D.V.","family":"Gorbachev","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9232-3397","authenticated-orcid":false,"given":"V.I.","family":"Ivanov","sequence":"additional","affiliation":[]},{"given":"S.Yu.","family":"Tikhonov","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"1953","series-title":"Higher Transcendental Functions. Vol.~2","author":"Bateman","key":"10.1016\/j.jat.2015.10.002_br000005"},{"key":"10.1016\/j.jat.2015.10.002_br000010","first-page":"1897","article-title":"Pitt\u2019s inequality and uncertainty principle","volume":"123","author":"Beckner","year":"1995","journal-title":"J.~Proc. Amer. Math. Soc."},{"issue":"1","key":"10.1016\/j.jat.2015.10.002_br000015","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.jmaa.2008.06.053","article-title":"On the Lp\u2013Lq norm of the Hankel transform and related operators","volume":"348","author":"De~Carli","year":"2008","journal-title":"J.~Math. Anal. Appl."},{"issue":"2","key":"10.1016\/j.jat.2015.10.002_br000020","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1016\/j.jmaa.2013.06.045","article-title":"Pitt and Boas inequalities for Fourier and Hankel transforms","volume":"408","author":"De~Carli","year":"2013","journal-title":"J.~Math. Anal. Appl."},{"issue":"1","key":"10.1016\/j.jat.2015.10.002_br000025","first-page":"43","article-title":"Equiconvergence theorems for Fourier\u2013Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces","volume":"338","author":"Colzani","year":"1975","journal-title":"Trans. Amer. Math. Soc."},{"year":"2001","series-title":"Orthogonal Polynomials of Several Variables","author":"Dunkl","key":"10.1016\/j.jat.2015.10.002_br000030"},{"issue":"1","key":"10.1016\/j.jat.2015.10.002_br000035","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1006\/jfan.2001.3777","article-title":"On weighted fractional integral inequalities","volume":"185","author":"Eilertsen","year":"2001","journal-title":"J.~Funct. Anal."},{"year":"1954","series-title":"Tables of Integral Transforms. Vol.~2","author":"Erd\u00e9lyi","key":"10.1016\/j.jat.2015.10.002_br000040"},{"key":"10.1016\/j.jat.2015.10.002_br000045","doi-asserted-by":"crossref","first-page":"197","DOI":"10.4064\/sm220-3-1","article-title":"Uncertainty principles for integral operators","volume":"220","author":"Ghobber","year":"2014","journal-title":"Studia Math."},{"key":"10.1016\/j.jat.2015.10.002_br000050","first-page":"241","article-title":"Uncertainty principles for the Dunkl transform","volume":"40","author":"Kawazoe","year":"2010","journal-title":"Hiroshima Math.~J."},{"key":"10.1016\/j.jat.2015.10.002_br000055","doi-asserted-by":"crossref","first-page":"655","DOI":"10.1080\/10652469.2010.537266","article-title":"Logarithmic uncertainty principle for the Hankel transform","volume":"22","author":"Omri","year":"2011","journal-title":"Integral Transforms Spec. Funct."},{"key":"10.1016\/j.jat.2015.10.002_br000060","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1017\/S0004972700033025","article-title":"An uncertainty principle for the Dunkl transform","volume":"59","author":"R\u00f6sler","year":"1999","journal-title":"Bull. Aust. Math. Soc."},{"key":"10.1016\/j.jat.2015.10.002_br000065","series-title":"Orthogonal Polynomials and Special Functions, Lecture Notes in Math","first-page":"93","article-title":"Theory and applications","author":"R\u00f6sler","year":"2002"},{"key":"10.1016\/j.jat.2015.10.002_br000070","first-page":"33","article-title":"A~note on the uncertainty principle for the Dunkl transform","volume":"8","author":"Shimeno","year":"2001","journal-title":"J.~Math. Sci. Univ. Tokyo"},{"issue":"2","key":"10.1016\/j.jat.2015.10.002_br000075","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1007\/s10474-014-0415-3","article-title":"Pitt\u2019s inequality and logarithmic uncertainty principle for the Dunkl transform on~R","volume":"143","author":"Soltani","year":"2014","journal-title":"Acta Math. Hungar."},{"issue":"9","key":"10.1016\/j.jat.2015.10.002_br000080","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1080\/10652469.2014.898142","article-title":"Pitt\u2019s inequalities for the Dunkl transform on Rd","volume":"25","author":"Soltani","year":"2014","journal-title":"Integral Transforms Spec. Funct."},{"year":"1971","series-title":"Introduction to Fourier Analysis on Euclidean Spaces","author":"Stein","key":"10.1016\/j.jat.2015.10.002_br000085"},{"key":"10.1016\/j.jat.2015.10.002_br000090","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1112\/S0024609300007001","article-title":"Funk\u2013Hecke formula for orthogonal polynomials on spheres and on balls","volume":"32","author":"Xu","year":"2000","journal-title":"Bull. Lond. Math. Soc."},{"issue":"1","key":"10.1016\/j.jat.2015.10.002_br000095","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1006\/jfan.1999.3462","article-title":"Sharp constants in the Hardy\u2013Rellich inequalities","volume":"168","author":"Yafaev","year":"1999","journal-title":"J.~Funct. Anal."},{"key":"10.1016\/j.jat.2015.10.002_br000100","first-page":"255","article-title":"The discrete spectrum in the singular Friedrichs model","volume":"vol. 189","author":"Yafaev","year":"1999"}],"container-title":["Journal of Approximation Theory"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021904515001458?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0021904515001458?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T10:28:00Z","timestamp":1655980080000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0021904515001458"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,2]]},"references-count":20,"alternative-id":["S0021904515001458"],"URL":"https:\/\/doi.org\/10.1016\/j.jat.2015.10.002","relation":{},"ISSN":["0021-9045"],"issn-type":[{"type":"print","value":"0021-9045"}],"subject":[],"published":{"date-parts":[[2016,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in","name":"articletitle","label":"Article Title"},{"value":"Journal of Approximation Theory","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jat.2015.10.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}