{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,10]],"date-time":"2024-12-10T05:06:40Z","timestamp":1733807200214,"version":"3.30.1"},"reference-count":90,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,19]],"date-time":"2024-08-19T00:00:00Z","timestamp":1724025600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.jag.2024.104113","type":"journal-article","created":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T03:31:24Z","timestamp":1724815884000},"page":"104113","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Accurate and efficient feature classification of urban public open spaces: A deep learning-based multivariate time-series approach"],"prefix":"10.1016","volume":"133","author":[{"ORCID":"https:\/\/orcid.org\/0009-0007-9603-377X","authenticated-orcid":false,"given":"Younghoo","family":"Kim","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4446-7692","authenticated-orcid":false,"given":"Heeyeun","family":"Yoon","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.jag.2024.104113_b0005","article-title":"Rapid identification of urban green space using Planetscope satellite image and artificial intelligence","volume":"1869","author":"Adhiwibawa","year":"2021","journal-title":"J. Phys.: Conf. Ser."},{"issue":"12","key":"10.1016\/j.jag.2024.104113_b0010","doi-asserted-by":"crossref","first-page":"7433","DOI":"10.1007\/s00034-023-02454-8","article-title":"Transformers in Time-Series Analysis: A Tutorial","volume":"42","author":"Ahmed","year":"2023","journal-title":"Circ. Syst. Signal Process."},{"issue":"10","key":"10.1016\/j.jag.2024.104113_b0015","doi-asserted-by":"crossref","first-page":"Article 10","DOI":"10.3390\/toxins15100608","article-title":"Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting","volume":"15","author":"Ahn","year":"2023","journal-title":"Toxins"},{"issue":"1","key":"10.1016\/j.jag.2024.104113_b0020","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1177\/0361198196153900105","article-title":"Using Time Series to Incorporate Seasonal Variations in Pavement Design","volume":"1539","author":"Ali","year":"1996","journal-title":"Transp. Res. Rec."},{"issue":"8","key":"10.1016\/j.jag.2024.104113_b0025","first-page":"6679","article-title":"TabNet: Attentive Interpretable Tabular Learning","volume":"35","author":"Arik","year":"2021","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"10.1016\/j.jag.2024.104113_b0030","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.landurbplan.2019.04.005","article-title":"Characteristics of urban parks and their relation to user well-being","volume":"189","author":"Ayala-Azc\u00e1rraga","year":"2019","journal-title":"Landsc. Urban Plan."},{"key":"10.1016\/j.jag.2024.104113_b0035","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.ecolind.2016.05.044","article-title":"Is urban green space per capita a valuable target to achieve cities\u2019 sustainability goals? Romania as a case study","volume":"70","author":"Badiu","year":"2016","journal-title":"Ecol. Indic."},{"issue":"23","key":"10.1016\/j.jag.2024.104113_b0040","doi-asserted-by":"crossref","first-page":"24529","DOI":"10.1109\/JIOT.2022.3190555","article-title":"Deep-Learning-Based Multivariate Time-Series Classification for Indoor\/Outdoor Detection","volume":"9","author":"Bakirtzis","year":"2022","journal-title":"IEEE Internet Things J."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0045","doi-asserted-by":"crossref","first-page":"2231","DOI":"10.1007\/s12145-021-00685-4","article-title":"A comparative analysis of different pixel and object-based classification algorithms using multi-source high spatial resolution satellite data for LULC mapping","volume":"14","author":"Balha","year":"2021","journal-title":"Earth Sci. Inform."},{"key":"10.1016\/j.jag.2024.104113_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.ufug.2020.126959","article-title":"Perceptions of park visitors on access to urban parks and benefits of green spaces","volume":"57","author":"Basu","year":"2021","journal-title":"Urban for. Urban Green."},{"issue":"10","key":"10.1016\/j.jag.2024.104113_b0055","doi-asserted-by":"crossref","first-page":"2763","DOI":"10.1016\/j.jenvman.2011.06.019","article-title":"The value of urban open space: Meta-analyses of contingent valuation and hedonic pricing results","volume":"92","author":"Brander","year":"2011","journal-title":"J. Environ. Manage."},{"issue":"1","key":"10.1016\/j.jag.2024.104113_b0060","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random Forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"6535","key":"10.1016\/j.jag.2024.104113_b0065","doi-asserted-by":"crossref","first-page":"eabe8628","DOI":"10.1126\/science.abe8628","article-title":"Using satellite imagery to understand and promote sustainable development","volume":"371","author":"Burke","year":"2021","journal-title":"Science"},{"key":"10.1016\/j.jag.2024.104113_b0075","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.isprsjprs.2014.09.002","article-title":"Global land cover mapping at 30m resolution: A POK-based operational approach","volume":"103","author":"Chen","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0080","article-title":"XGBoost: A Scalable Tree Boosting System","volume":"785\u2013794","author":"Chen","year":"2016","journal-title":"Proc. ACM SIGKDD Int Conf. Knowl. Discov. Data Min."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0085","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jag.2024.104113_b0090","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.isprsjprs.2022.12.027","article-title":"A novel weakly supervised semantic segmentation framework to improve the resolution of land cover product","volume":"196","author":"Chen","year":"2023","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0095","article-title":"Canopy transpiration and its cooling effect of three urban tree species in a subtropical city- Guangzhou","volume":"43","author":"Chen","year":"2019","journal-title":"China. Urban for. Urban Green."},{"issue":"1","key":"10.1016\/j.jag.2024.104113_b0100","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.landurbplan.2003.08.003","article-title":"The role of urban parks for the sustainable city","volume":"68","author":"Chiesura","year":"2004","journal-title":"Landsc. Urban Plan."},{"unstructured":"Chu, B., Madhavan, V., Beijbom, O., Hoffman, J., Darrell, T., 2016. Best practices for fine-tuning visual classifiers to new domains. Comput. Vis.\u2013ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III, 14.","key":"10.1016\/j.jag.2024.104113_b0105"},{"issue":"6","key":"10.1016\/j.jag.2024.104113_b0110","doi-asserted-by":"crossref","first-page":"763","DOI":"10.1017\/S1351324921000322","article-title":"Emerging trends: A gentle introduction to fine-tuning","volume":"27","author":"Church","year":"2021","journal-title":"Nat. Lang. Eng."},{"key":"10.1016\/j.jag.2024.104113_b0115","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2021.103313","article-title":"Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions","volume":"75","author":"Croce","year":"2021","journal-title":"Sustain. Cities Soc."},{"key":"10.1016\/j.jag.2024.104113_b0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.ufug.2019.126488","article-title":"Empirical study of landscape types, landscape elements and landscape components of the urban park promoting physiological and psychological restoration","volume":"48","author":"Deng","year":"2020","journal-title":"Urban for. Urban Green."},{"key":"10.1016\/j.jag.2024.104113_b0125","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.isprsjprs.2020.01.013","article-title":"ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data","volume":"162","author":"Diakogiannis","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119009","article-title":"Multi-feature based network for multivariate time series classification","volume":"639","author":"Du","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.jag.2024.104113_b0135","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.rse.2011.11.020","article-title":"A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery","volume":"118","author":"Duro","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2024.104113_b0140","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.envsci.2020.04.008","article-title":"Urban green spaces for the social interaction, health and well-being of older people\u2014 An integrated view of urban ecosystem services and socio-environmental justice","volume":"109","author":"Enssle","year":"2020","journal-title":"Environ. Sci. Policy"},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0145","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1109\/LGRS.2018.2803259","article-title":"Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting","volume":"15","author":"Georganos","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"10.1016\/j.jag.2024.104113_b0150","doi-asserted-by":"crossref","first-page":"634","DOI":"10.3390\/rs14030634","article-title":"4D U-Nets for Multi-Temporal Remote Sensing Data Classification","volume":"14","author":"Giannopoulos","year":"2022","journal-title":"Remote Sens."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0155","doi-asserted-by":"crossref","first-page":"352","DOI":"10.3390\/rs8040352","article-title":"Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City","volume":"8","author":"Haashemi","year":"2016","journal-title":"Remote Sens."},{"issue":"8","key":"10.1016\/j.jag.2024.104113_b0160","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"year":"2018","author":"Hu","series-title":"Squeeze-and-Excitation Networks","key":"10.1016\/j.jag.2024.104113_b0165"},{"key":"10.1016\/j.jag.2024.104113_b0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LGRS.2022.3188257","article-title":"Semantic Segmentation of Remote Sensing Images With Sparse Annotations","volume":"19","author":"Hua","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2024.104113_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.apgeog.2022.102733","article-title":"Offering green roofs in a compact city: Benefits and landscape preferences of socio-demographic cohorts","volume":"145","author":"Jim","year":"2022","journal-title":"Appl. Geogr."},{"key":"10.1016\/j.jag.2024.104113_b0180","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neunet.2019.04.014","article-title":"Multivariate LSTM-FCNs for time series classification","volume":"116","author":"Karim","year":"2019","journal-title":"Neural Netw."},{"unstructured":"Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y., 2017. LightGBM: A highly efficient gradient boosting decision tree. Proc. 31st Int. Conf. Neural Inf. Process. Syst., 3149\u20133157.","key":"10.1016\/j.jag.2024.104113_b0185"},{"key":"10.1016\/j.jag.2024.104113_b0190","article-title":"Rapid wildfire damage estimation using integrated object-based classification with auto-generated training samples from Sentinel-2 imagery on Google Earth Engine","volume":"126","author":"Kulinan","year":"2024","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.104113_b0195","doi-asserted-by":"crossref","first-page":"52067","DOI":"10.1109\/ACCESS.2021.3069882","article-title":"Sparse Pixel Training of Convolutional Neural Networks for Land Cover Classification","volume":"9","author":"Laban","year":"2021","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.jag.2024.104113_b0200","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1080\/15481603.2019.1698490","article-title":"Analysis of differences in vegetation phenology cycle of abandoned farmland, using harmonic analysis of time-series vegetation indices data: the case of Gwangyang City","volume":"57","author":"Lee","year":"2020","journal-title":"South Korea. Gisci. Remote Sens."},{"issue":"15","key":"10.1016\/j.jag.2024.104113_b0205","first-page":"9139","article-title":"Fine-Scale Classification of Urban Land Use and Land Cover with PlanetScope Imagery and Machine Learning Strategies in the City of Cape Town","volume":"14","author":"Lefulebe","year":"2022","journal-title":"South Africa. Sustainability"},{"key":"10.1016\/j.jag.2024.104113_b0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2024.105956","article-title":"Appraisal of EnMAP hyperspectral imagery use in LULC mapping when combined with machine learning pixel-based classifiers","volume":"173","author":"Lekka","year":"2024","journal-title":"Environ. Model. Softw."},{"issue":"2","key":"10.1016\/j.jag.2024.104113_b0215","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/10095020.2021.2017237","article-title":"Land cover classification from remote sensing images based on multi-scale fully convolutional network","volume":"25","author":"Li","year":"2022","journal-title":"Geo-Spatial Inf. Sci."},{"year":"2022","author":"Ma","series-title":"Detection and Classification of Robotic Manipulator Anomalies Using MLSTM-FCN Models","key":"10.1016\/j.jag.2024.104113_b0220"},{"issue":"3","key":"10.1016\/j.jag.2024.104113_b0225","doi-asserted-by":"crossref","first-page":"966","DOI":"10.3390\/ma16030966","article-title":"Asphalt Mixtures Fatigue Life Considering Various Environmental Impacts","volume":"16","author":"M\u0105czka","year":"2023","journal-title":"Materials"},{"key":"10.1016\/j.jag.2024.104113_b0230","doi-asserted-by":"crossref","DOI":"10.1016\/j.landurbplan.2021.104042","article-title":"Providing ecological, cultural and commercial services in an urban park: A travel cost\u2013contingent behavior application in Finland","volume":"209","author":"M\u00e4ntymaa","year":"2021","journal-title":"Landsc. Urban Plan."},{"issue":"7","key":"10.1016\/j.jag.2024.104113_b0235","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1080\/01431169608948714","article-title":"The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features","volume":"17","author":"McFeeters","year":"1996","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0240","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.neucom.2023.03.025","article-title":"Land use and land cover classification with hyperspectral data: A comprehensive review of methods, challenges and future directions","volume":"536","author":"Moharram","year":"2023","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.jag.2024.104113_b0245","doi-asserted-by":"crossref","first-page":"88","DOI":"10.3390\/rs8020088","article-title":"Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach","volume":"8","author":"Momeni","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2020.137461","article-title":"Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation - development and evaluation","volume":"719","author":"Morakinyo","year":"2020","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.jag.2024.104113_b0255","doi-asserted-by":"crossref","DOI":"10.1016\/j.cities.2021.103229","article-title":"Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being","volume":"115","author":"Mouratidis","year":"2021","journal-title":"Cities"},{"issue":"2","key":"10.1016\/j.jag.2024.104113_b0260","doi-asserted-by":"crossref","first-page":"360","DOI":"10.3390\/su11020360","article-title":"Understanding Stakeholder Perceptions of Acceptability and Feasibility of Formal and Informal Planting in Sheffield\u2019s District Parks","volume":"11","author":"Nam","year":"2019","journal-title":"Sustainability"},{"doi-asserted-by":"crossref","unstructured":"Nery, T., Sadler, R., Solis-Aulestia, M., White, B., Polyakov, M., & Chalak, M., 2016, 10-15 July 2016. Comparing supervised algorithms in Land Use and Land Cover classification of a Landsat time-series. 2016 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS).","key":"10.1016\/j.jag.2024.104113_b0265","DOI":"10.1109\/IGARSS.2016.7730346"},{"key":"10.1016\/j.jag.2024.104113_b0270","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.envpol.2013.03.019","article-title":"Carbon storage and sequestration by trees in urban and community areas of the United States","volume":"178","author":"Nowak","year":"2013","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.jag.2024.104113_b0275","doi-asserted-by":"crossref","first-page":"123683","DOI":"10.1109\/ACCESS.2020.3005994","article-title":"Discovery and Prediction of Stock Index Pattern via Three-Stage Architecture of TICC, TPA-LSTM and Multivariate LSTM-FCNs","volume":"8","author":"Ouyang","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.jag.2024.104113_b0280","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.isprsjprs.2022.11.012","article-title":"Benchmarking and scaling of deep learning models for land cover image classification","volume":"195","author":"Papoutsis","year":"2023","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0285","doi-asserted-by":"crossref","DOI":"10.1016\/j.enbuild.2020.110455","article-title":"Analysis of the heat budget of standard, cool and watered pavements under lab heat-wave conditions","volume":"228","author":"Parison","year":"2020","journal-title":"Energy Build."},{"unstructured":"Planet Team (2023). PlanetScope Product Specifications. December 2023, Available online. https:\/\/assets.planet.com\/docs\/Planet_PSScene_Imagery_Product_Spec_letter_screen.pdf (last accessed on March 28 2024).","key":"10.1016\/j.jag.2024.104113_b0290"},{"unstructured":"Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A., 2018. CatBoost: Unbiased boosting with categorical features. Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 6639\u20136649.","key":"10.1016\/j.jag.2024.104113_b0295"},{"key":"10.1016\/j.jag.2024.104113_b0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.ufug.2019.126485","article-title":"Associations between park features, park satisfaction and park use in a multi-ethnic deprived urban area","volume":"46","author":"Roberts","year":"2019","journal-title":"Urban for. Urban Green."},{"unstructured":"Ronneberger, O., Fischer, P., & Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. Med. Image Comput. Comput. Assist. Interv. MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.","key":"10.1016\/j.jag.2024.104113_b0305"},{"key":"10.1016\/j.jag.2024.104113_b0310","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112586","article-title":"A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery","volume":"264","author":"Roy","year":"2021","journal-title":"Remote Sens. Environ"},{"year":"2018","author":"Sch\u00e4fer","series-title":"Classifying Land Cover from Satellite Images Using Time Series Analytics","key":"10.1016\/j.jag.2024.104113_b0315"},{"doi-asserted-by":"crossref","unstructured":"Schlegel, K., Mirus, F., Neubert, P., Protzel, P., 2021. Multivariate time series analysis for driving style classification using neural networks and hyperdimensional computing. 2021 IEEE Intell. Vehicles Symp. (IV).","key":"10.1016\/j.jag.2024.104113_b0320","DOI":"10.1109\/IV48863.2021.9576028"},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0325","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1109\/LGRS.2017.2657778","article-title":"Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery","volume":"14","author":"Scott","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0330","doi-asserted-by":"crossref","first-page":"Article 4","DOI":"10.3390\/rs16040665","article-title":"Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface","volume":"16","author":"Shao","year":"2024","journal-title":"Remote Sens."},{"issue":"22","key":"10.1016\/j.jag.2024.104113_b0335","doi-asserted-by":"crossref","first-page":"2719","DOI":"10.3390\/rs11222719","article-title":"Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data","volume":"11","author":"Shi","year":"2019","journal-title":"Remote Sens."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0340","doi-asserted-by":"crossref","first-page":"1630","DOI":"10.3390\/su12041630","article-title":"Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco","volume":"12","author":"Song","year":"2020","journal-title":"Sustainability"},{"key":"10.1016\/j.jag.2024.104113_b0345","doi-asserted-by":"crossref","DOI":"10.1016\/j.ufug.2020.126601","article-title":"Fear and fascination: Use and perceptions of New York City\u2019s forests, wetlands, and landscaped park areas","volume":"49","author":"Sonti","year":"2020","journal-title":"Urban for. Urban Green."},{"issue":"14","key":"10.1016\/j.jag.2024.104113_b0350","doi-asserted-by":"crossref","first-page":"3391","DOI":"10.3390\/rs14143391","article-title":"An Impervious Surface Spectral Index on Multispectral Imagery Using Visible and Near-Infrared Bands","volume":"14","author":"Su","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0355","article-title":"Quantitative estimation for the impact of mining activities on vegetation phenology and identifying its controlling factors from Sentinel-2 time series","volume":"111","author":"Sun","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"7","key":"10.1016\/j.jag.2024.104113_b0360","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.3390\/rs12071135","article-title":"Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations\u2014A Review","volume":"12","author":"Talukdar","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0365","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111322","article-title":"Land-cover classification with high-resolution remote sensing images using transferable deep models","volume":"237","author":"Tong","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2024.104113_b0370","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.isprsjprs.2022.12.011","article-title":"Enabling country-scale land cover mapping with meter-resolution satellite imagery","volume":"196","author":"Tong","year":"2023","journal-title":"Isprs J. Photogramm. Remote Sens."},{"issue":"15","key":"10.1016\/j.jag.2024.104113_b0375","doi-asserted-by":"crossref","first-page":"2495","DOI":"10.3390\/rs12152495","article-title":"Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review","volume":"12","author":"Vali","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0380","doi-asserted-by":"crossref","DOI":"10.1016\/j.ufug.2021.127291","article-title":"Promoting sustainable carbon sequestration of plants in urban greenspace by planting design: A case study in parks of Beijing","volume":"64","author":"Wang","year":"2021","journal-title":"Urban for. Urban Green."},{"issue":"1","key":"10.1016\/j.jag.2024.104113_b0385","first-page":"26","article-title":"Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb","volume":"17","author":"Wu","year":"2019","journal-title":"J. Electron. Sci. Technol."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0390","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/IJAEIS.20211001.oa1","article-title":"Prediction of soybean price trend via a synthesis method with multistage model","volume":"12","author":"Xu","year":"2021","journal-title":"Int. J. Agric. Environ. Inf. Syst. (IJAEIS)"},{"issue":"6","key":"10.1016\/j.jag.2024.104113_b0395","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1109\/JSTARS.2019.2911113","article-title":"Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS data fusion contest","volume":"12","author":"Xu","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0400","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.aca.2020.11.018","article-title":"Deep learning for classification of time series spectral images using combined multi-temporal and spectral features","volume":"1143","author":"Xu","year":"2021","journal-title":"Anal. Chim. Acta"},{"key":"10.1016\/j.jag.2024.104113_b0405","article-title":"How can urban parks be planned to mitigate urban heat island effect in \u201cFurnace cities\u201d ?","volume":"330","author":"Yao","year":"2022","journal-title":"An Accumulation Perspective. J. Clean. Prod."},{"key":"10.1016\/j.jag.2024.104113_b0410","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.isprsjprs.2020.05.021","article-title":"Detecting abandoned farmland using harmonic analysis and machine learning","volume":"166","author":"Yoon","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"1","key":"10.1016\/j.jag.2024.104113_b0415","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1080\/15481603.2022.2096184","article-title":"FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping","volume":"59","author":"Yu","year":"2022","journal-title":"Gisci. Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0420","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111716","article-title":"Deep learning in environmental remote sensing: Achievements and challenges","volume":"241","author":"Yuan","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2024.104113_b0425","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2022.113106","article-title":"UrbanWatch: A 1-meter resolution land cover and land use database for 22 major cities in the United States","volume":"278","author":"Zhang","year":"2022","journal-title":"Remote Sens. Environ."},{"issue":"15","key":"10.1016\/j.jag.2024.104113_b0430","doi-asserted-by":"crossref","first-page":"3721","DOI":"10.3390\/rs14153721","article-title":"Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method","volume":"14","author":"Zhang","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.104113_b0435","doi-asserted-by":"crossref","DOI":"10.1016\/j.ufug.2023.127898","article-title":"A quasi-experimental analysis on the causal effects of COVID-19 on urban park visits: The role of park features and the surrounding built environment","volume":"82","author":"Zhang","year":"2023","journal-title":"Urban for. Urban Green."},{"issue":"4","key":"10.1016\/j.jag.2024.104113_b0440","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1016\/j.ijprt.2017.09.007","article-title":"Seasonal variations and in situ assessment of concrete pavement foundation mechanistic properties","volume":"11","author":"Zhang","year":"2018","journal-title":"Int. J. Pavement Res. Technol."},{"key":"10.1016\/j.jag.2024.104113_b0445","article-title":"The influence of Community Sports Parks on residents\u2019 subjective well-being: A case study of Zhuhai City","volume":"117","author":"Zhang","year":"2021","journal-title":"China. Habitat Int."},{"key":"10.1016\/j.jag.2024.104113_b0450","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.comcom.2021.10.036","article-title":"LSTM-MFCN: A time series classifier based on multi-scale spatial\u2013temporal features","volume":"182","author":"Zhao","year":"2022","journal-title":"Comput. Commun."},{"issue":"11","key":"10.1016\/j.jag.2024.104113_b0455","doi-asserted-by":"crossref","first-page":"2610","DOI":"10.1016\/j.rse.2010.05.032","article-title":"An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions","volume":"114","author":"Zhu","year":"2010","journal-title":"Remote Sens. Environ."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843224004679?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843224004679?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,9]],"date-time":"2024-12-09T08:16:43Z","timestamp":1733732203000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843224004679"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":90,"alternative-id":["S1569843224004679"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2024.104113","relation":{},"ISSN":["1569-8432"],"issn-type":[{"type":"print","value":"1569-8432"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Accurate and efficient feature classification of urban public open spaces: A deep learning-based multivariate time-series approach","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2024.104113","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"104113"}}