{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T04:28:00Z","timestamp":1729139280845,"version":"3.27.0"},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,26]],"date-time":"2024-04-26T00:00:00Z","timestamp":1714089600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.jag.2024.103878","type":"journal-article","created":{"date-parts":[[2024,5,2]],"date-time":"2024-05-02T16:37:12Z","timestamp":1714667832000},"page":"103878","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Where is my attention? An explainable AI exploration in water detection from SAR imagery"],"prefix":"10.1016","volume":"130","author":[{"given":"Lifu","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7067-0961","authenticated-orcid":false,"given":"Xingmin","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Zhenhong","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5693-3414","authenticated-orcid":false,"given":"Jin","family":"Xing","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7150-2062","authenticated-orcid":false,"given":"Jiaqiu","family":"Ai","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.jag.2024.103878_b0005","doi-asserted-by":"crossref","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","article-title":"Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)","volume":"2018","author":"Adadi","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.jag.2024.103878_b0010","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","article-title":"Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI","volume":"58","author":"Arrieta","year":"2020","journal-title":"Inf. Fusion"},{"issue":"3","key":"10.1016\/j.jag.2024.103878_b0015","doi-asserted-by":"crossref","first-page":"2195","DOI":"10.3390\/rs6032195","article-title":"The Delineation of Paleo-Shorelines in the Lake Manyara Basin Using TerraSAR-X Data","volume":"6","author":"Bachofer","year":"2014","journal-title":"Remote Sens."},{"issue":"17","key":"10.1016\/j.jag.2024.103878_b0020","doi-asserted-by":"crossref","first-page":"3465","DOI":"10.3390\/rs13173465","article-title":"Water extraction in SAR Images using features analysis and dual-threshold graph cut model","volume":"13","author":"Bao","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0025","doi-asserted-by":"crossref","unstructured":"Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A., 2017. Network dissection: Quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6541\u20136549. DOI: 10.1109\/CVPR.2017.354.","DOI":"10.1109\/CVPR.2017.354"},{"issue":"2","key":"10.1016\/j.jag.2024.103878_b0030","doi-asserted-by":"crossref","first-page":"217","DOI":"10.3390\/rs10020217","article-title":"A method for automatic and rapid mapping of water surfaces from sentinel-1 imagery","volume":"10","author":"Bioresita","year":"2018","journal-title":"Remote Sen."},{"key":"10.1016\/j.jag.2024.103878_b0035","doi-asserted-by":"crossref","unstructured":"Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N., 2018. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks. Presented at the 2018 IEEE Winter Conference on Applications of Computer Vision, pp. 839\u2013847. DOI: 10.1109\/WACV.2018.00097.","DOI":"10.1109\/WACV.2018.00097"},{"key":"10.1016\/j.jag.2024.103878_b0040","doi-asserted-by":"crossref","unstructured":"Chen, L., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the ECCV, pp. 801-818. DOI: 10.1007\/978-3-030-01234-2_49.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"10.1016\/j.jag.2024.103878_b0045","doi-asserted-by":"crossref","first-page":"3205","DOI":"10.3390\/rs12193205","article-title":"A Multi-scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas","volume":"12","author":"Chen","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0050","article-title":"Employing deep learning for automatic river bridge detection from SAR images based on adaptively effective feature fusion","volume":"102","author":"Chen","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinformation"},{"key":"10.1016\/j.jag.2024.103878_b0055","first-page":"1","article-title":"Geospatial transformer is what you need for aircraft detection in SAR Imagery","volume":"60","author":"Chen","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0060","doi-asserted-by":"crossref","first-page":"3735","DOI":"10.1109\/JSTARS.2020.3005403","article-title":"Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Select","volume":"13","author":"Cheng","year":"2020","journal-title":"Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0065","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1109\/JSTARS.2020.3040176","article-title":"Sanet: A sea\u2013land segmentation network via adaptive multiscale feature learning. IEEE J. Select","volume":"14","author":"Cui","year":"2020","journal-title":"Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0070","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1109\/LGRS.2019.2926412","article-title":"Multiscale refinement network for water-body segmentation in high-resolution satellite imagery","volume":"17","author":"Duan","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2024.103878_b0075","doi-asserted-by":"crossref","unstructured":"Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H., 2019. Attention Branch Network: Learning of Attention Mechanism for Visual Explanation, in: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 10697\u201310706. DOI: 10.1109\/CVPR.2019.01096.","DOI":"10.1109\/CVPR.2019.01096"},{"key":"10.1016\/j.jag.2024.103878_b0080","doi-asserted-by":"crossref","first-page":"4291","DOI":"10.1109\/TNNLS.2020.3019893","article-title":"Attention in Natural Language Processing","volume":"32","author":"Galassi","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learning Syst."},{"issue":"9","key":"10.1016\/j.jag.2024.103878_b0085","doi-asserted-by":"crossref","first-page":"189","DOI":"10.3390\/ijgi9040189","article-title":"A Multi-Scale Water Extraction Convolutional Neural Network (MWEN) Method for GaoFen-1 Remote Sensing Images","volume":"2020","author":"Guo","year":"2020","journal-title":"ISPRS Int. J. Geo. Inform."},{"key":"10.1016\/j.jag.2024.103878_b0090","article-title":"Visual explanations with detailed spatial information for remote sensing image classification via channel saliency","volume":"118","author":"Guo","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103878_b0095","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/s41095-022-0271-y","article-title":"Attention Mechanisms in Computer Vision: A Survey","volume":"8","author":"Guo","year":"2022","journal-title":"Comp. Visual Media"},{"key":"10.1016\/j.jag.2024.103878_b0100","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132\u20137141. DOI: 10.1109\/CVPR.2018.00745.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10.1016\/j.jag.2024.103878_b0105","doi-asserted-by":"crossref","unstructured":"Jiang, P., Hou, Q., Cao, Y., Cheng, M., Wei, Y., and Xiong, H., 2019. Integral object mining via online attention accumulation. In Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2070\u20132079. DOI: 10.1109\/ICCV.2019.00216.","DOI":"10.1109\/ICCV.2019.00216"},{"key":"10.1016\/j.jag.2024.103878_b0110","doi-asserted-by":"crossref","first-page":"5875","DOI":"10.1109\/TIP.2021.3089943","article-title":"LayerCAM: Exploring Hierarchical Class Activation Maps for Localization","volume":"30","author":"Jiang","year":"2021","journal-title":"IEEE Trans. on Image Process."},{"key":"10.1016\/j.jag.2024.103878_b0115","doi-asserted-by":"crossref","unstructured":"Lee, Y., Park, J., 2020. CenterMask: Real-Time Anchor-Free Instance Segmentation. In Proceedings of the IEEE\/CVF International Conference on Computer Vision. DOI: 10.1109\/CVPR42600.2020.01392.","DOI":"10.1109\/CVPR42600.2020.01392"},{"key":"10.1016\/j.jag.2024.103878_b0120","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1016\/j.isprsjprs.2022.03.013","article-title":"Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives","volume":"187","author":"Li","year":"2022","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0125","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.isprsjprs.2019.10.017","article-title":"A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery","volume":"159","author":"Liang","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0130","doi-asserted-by":"crossref","unstructured":"Liu, S.-A., Xie, H., Xu, H., Zhang, Y., Tian, Q., 2022. Partial Class Activation Attention for Semantic Segmentation, in: 2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 16815\u201316824. DOI: 10.1109\/CVPR52688.2022.01633.","DOI":"10.1109\/CVPR52688.2022.01633"},{"key":"10.1016\/j.jag.2024.103878_b0135","doi-asserted-by":"crossref","first-page":"303","DOI":"10.5194\/nhess-9-303-2009","article-title":"Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data","volume":"9","author":"Martinis","year":"2009","journal-title":"Nat. Hazards Earth Syst. Sci."},{"key":"10.1016\/j.jag.2024.103878_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2022.113077","article-title":"Towards a Global Seasonal and Permanent Reference Water Product from Sentinel-1\/2 Data for Improved Flood Mapping","volume":"278","author":"Martinis","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2024.103878_b0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.artint.2018.07.007","article-title":"Explanation in artificial intelligence: Insights from the social sciences","volume":"267","author":"Miller","year":"2019","journal-title":"Artificial Intelligence"},{"key":"10.1016\/j.jag.2024.103878_b0150","doi-asserted-by":"crossref","unstructured":"Mohankumar, A.K., Nema, P., Narasimhan, S., Khapra, M.M., Srinivasan, B.V., Ravindran, B., 2020. Towards Transparent and Explainable Attention Models, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 4206\u20134216. DOI: 10.18653\/v1\/2020.acl-main.387.","DOI":"10.18653\/v1\/2020.acl-main.387"},{"key":"10.1016\/j.jag.2024.103878_b0155","series-title":"In 2022 IEEE International Symposium on Multimedia","first-page":"55","article-title":"TAME: Attention Mechanism Based Feature Fusion for Generating Explanation Maps of Convolutional Neural Networks","author":"Ntrougkas","year":"2023"},{"key":"10.1016\/j.jag.2024.103878_b0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2022.112963","article-title":"Global seasonal dynamics of inland open water and ice","volume":"272","author":"Pickens","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2024.103878_b0165","doi-asserted-by":"crossref","first-page":"11890","DOI":"10.1609\/aaai.v34i07.6863","article-title":"Visualizing Deep Networks by Optimizing with Integrated Gradients","volume":"34","author":"Qi","year":"2020","journal-title":"In Proceedings of the AAAI Conference on Artificial Intelligence"},{"issue":"2","key":"10.1016\/j.jag.2024.103878_b0170","doi-asserted-by":"crossref","first-page":"2117","DOI":"10.1609\/aaai.v36i2.20108","article-title":"Activation Modulation and Recalibration Scheme for Weakly Supervised Semantic Segmentation","volume":"36","author":"Qin","year":"2022","journal-title":"In Proceedings of the AAAI Conference on Artificial Intelligence."},{"key":"10.1016\/j.jag.2024.103878_b0175","first-page":"1","article-title":"Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images","volume":"19","author":"Ren","year":"2022","journal-title":"IEEE Geosci. Remote Sensing Lett."},{"key":"10.1016\/j.jag.2024.103878_b0180","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention, 5\u20139, pp. 234\u2013241. DOI: 10.1007\/978-3-319-24574-4_28.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.jag.2024.103878_b0185","series-title":"Presented at the Proceedings of the IEEE International Conference on Computer Vision","first-page":"618","article-title":"Grad-cam: Visual explanations from deep networks via gradient-based localization","author":"Selvaraju","year":"2017"},{"article-title":"SmoothGrad: removing noise by adding noise","year":"2017","series-title":"In: ICML Workshop on Visualization for Deep Learning","author":"Smilkov","key":"10.1016\/j.jag.2024.103878_b0190"},{"key":"10.1016\/j.jag.2024.103878_b0195","series-title":"In: 2022 22nd International Conference on Control, Automation and Systems (ICCAS)","first-page":"1595","article-title":"Explainable artificial intelligence (XAI): How to make image analysis deep learning models transparent","author":"Song","year":"2022"},{"key":"10.1016\/j.jag.2024.103878_b0200","doi-asserted-by":"crossref","first-page":"47011","DOI":"10.1109\/ACCESS.2022.3169772","article-title":"Toward Practical Usage of the Attention Mechanism as a Tool for Interpretability","volume":"10","author":"Tutek","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.jag.2024.103878_b0205","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention Is All You Need. In: Advances in Neural Information Processing Systems, Vol. 30. DOI: 10.5555\/3295222.3295349."},{"key":"10.1016\/j.jag.2024.103878_b0210","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.isprsjprs.2022.05.007","article-title":"A second-order attention network for glacial lake segmentation from remotely sensed imagery","volume":"189","author":"Wang","year":"2022","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0215","series-title":"Presented at the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops","first-page":"111","article-title":"Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks","author":"Wang","year":"2020"},{"key":"10.1016\/j.jag.2024.103878_b0220","doi-asserted-by":"crossref","first-page":"256","DOI":"10.3390\/ijgi9040256","article-title":"Water areas segmentation from remote sensing images using a separable residual segnet network","volume":"9","author":"Weng","year":"2020","journal-title":"ISPRS Int. J. Geo. Inform."},{"key":"10.1016\/j.jag.2024.103878_b0225","series-title":"In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing","first-page":"11","article-title":"Attention is not not Explanation","author":"Wiegreffe","year":"2019"},{"key":"10.1016\/j.jag.2024.103878_b0230","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. CBAM: Convolutional Block Attention Module, in: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.), Computer Vision \u2013 ECCV 2018, pp. 3\u201319. DOI: 10.1007\/978-3-030-01234-2_1.","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10.1016\/j.jag.2024.103878_b0235","doi-asserted-by":"crossref","first-page":"1200","DOI":"10.1109\/TGRS.2020.3004911","article-title":"Multiscale CNN With Autoencoder Regularization Joint Contextual Attention Network for SAR Image Classification","volume":"59","author":"Wu","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"article-title":"Integrating XAI and GeoAI","year":"2021","series-title":"Giscience 2021 Short Paper Proceedings. 11th International Conference on Geographic Information Science","author":"Xing","key":"10.1016\/j.jag.2024.103878_b0240"},{"key":"10.1016\/j.jag.2024.103878_b0245","doi-asserted-by":"crossref","DOI":"10.1111\/tgis.13045","article-title":"The challenges of integrating explainable artificial intelligence into GeoAI","author":"Xing","year":"2023","journal-title":"Transactions in GIS"},{"key":"10.1016\/j.jag.2024.103878_b0250","first-page":"1","article-title":"An Explainable Attention Network for Fine-Grained Ship Classification Using Remote-Sensing Images","volume":"60","author":"Xiong","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2024.103878_b0255","doi-asserted-by":"crossref","first-page":"2696","DOI":"10.1109\/TCSVT.2022.3224068","article-title":"An Interpretable Fusion Siamese Network for Multi-Modality Remote Sensing Ship Image Retrieval","volume":"33","author":"Xiong","year":"2023","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.jag.2024.103878_b0260","doi-asserted-by":"crossref","first-page":"2416","DOI":"10.3390\/s22062416","article-title":"Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing","volume":"22","author":"Yang","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.jag.2024.103878_b0265","article-title":"WaterHRNet: A multibranch hierarchical attentive network for water body extraction with remote sensing images","volume":"115","author":"Yu","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"16","key":"10.1016\/j.jag.2024.103878_b0270","doi-asserted-by":"crossref","first-page":"3576","DOI":"10.3390\/s19163576","article-title":"Automatic extraction of water and shadow from SAR images based on a multi-resolution dense encoder and decoder network","volume":"19","author":"Zhang","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.jag.2024.103878_b0275","series-title":"In: 2021 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"IA-CNN: A generalised interpretable convolutional neural network with attention mechanism","author":"Zhang","year":"2021"},{"key":"10.1016\/j.jag.2024.103878_b0280","series-title":"In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2921","article-title":"Learning Deep Features for Discriminative Localization","author":"Zhou","year":"2016"}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843224002322?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843224002322?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T17:54:24Z","timestamp":1729101264000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843224002322"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":56,"alternative-id":["S1569843224002322"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2024.103878","relation":{},"ISSN":["1569-8432"],"issn-type":[{"type":"print","value":"1569-8432"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Where is my attention? An explainable AI exploration in water detection from SAR imagery","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2024.103878","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103878"}}