{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T18:26:52Z","timestamp":1743013612273},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.jag.2024.103812","type":"journal-article","created":{"date-parts":[[2024,4,9]],"date-time":"2024-04-09T11:46:14Z","timestamp":1712663174000},"page":"103812","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"title":["High-resolution mapping of GDP using multi-scale feature fusion by integrating remote sensing and POI data"],"prefix":"10.1016","volume":"129","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1041-770X","authenticated-orcid":false,"given":"Nan","family":"Wu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0680-5427","authenticated-orcid":false,"given":"Jining","family":"Yan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9147-7792","authenticated-orcid":false,"given":"Dong","family":"Liang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3219-0542","authenticated-orcid":false,"given":"Zhongchang","family":"Sun","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6610-1328","authenticated-orcid":false,"given":"Rajiv","family":"Ranjan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1613-9448","authenticated-orcid":false,"given":"Jun","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2024.103812_b1","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.isprsjprs.2023.05.006","article-title":"Geographic mapping with unsupervised multi-modal representation learning from VHR images and POIs","volume":"201","author":"Bai","year":"2023","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2024.103812_b2","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.jag.2024.103812_b3","doi-asserted-by":"crossref","unstructured":"Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785\u2013794.","DOI":"10.1145\/2939672.2939785"},{"key":"10.1016\/j.jag.2024.103812_b4","doi-asserted-by":"crossref","first-page":"1791","DOI":"10.1109\/JSTARS.2022.3148448","article-title":"Mapping gridded gross domestic product distribution of China using deep learning with multiple geospatial big data","volume":"15","author":"Chen","year":"2022","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"2","key":"10.1016\/j.jag.2024.103812_b5","doi-asserted-by":"crossref","first-page":"417","DOI":"10.3390\/rs16020417","article-title":"The assessment of industrial agglomeration in China based on NPP-VIIRS nighttime light imagery and POI data","volume":"16","author":"Chen","year":"2024","journal-title":"Remote Sens."},{"issue":"7","key":"10.1016\/j.jag.2024.103812_b6","first-page":"1876","article-title":"Mapping China\u2019s regional economic activity by integrating points-of-interest and remote sensing data with random forest","volume":"48","author":"Chen","year":"2021","journal-title":"Environ. Plann. B: Urban Anal. City Sci."},{"key":"10.1016\/j.jag.2024.103812_b7","doi-asserted-by":"crossref","first-page":"5973","DOI":"10.1109\/JSTARS.2021.3086139","article-title":"Remote sensing and social sensing data fusion for fine-resolution population mapping with a multimodel neural network","volume":"14","author":"Cheng","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"10","key":"10.1016\/j.jag.2024.103812_b8","doi-asserted-by":"crossref","first-page":"8062","DOI":"10.3390\/su15108062","article-title":"Mapping China\u2019s changing gross domestic product distribution using remotely sensed and point-of-interest data with geographical random forest model","volume":"15","author":"Deng","year":"2023","journal-title":"Sustainability"},{"issue":"6","key":"10.1016\/j.jag.2024.103812_b9","doi-asserted-by":"crossref","first-page":"1373","DOI":"10.1080\/014311697218485","article-title":"Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption","volume":"18","author":"Elvidge","year":"1997","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2024.103812_b10","article-title":"Urban informal settlements classification via a transformer-based spatial-temporal fusion network using multimodal remote sensing and time-series human activity data","volume":"111","author":"Fan","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103812_b11","doi-asserted-by":"crossref","first-page":"34352","DOI":"10.1109\/ACCESS.2021.3059865","article-title":"Estimating socio-economic parameters via machine learning methods using luojia1-01 nighttime light remotely sensed images at multiple scales of China in 2018","volume":"9","author":"Guo","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.jag.2024.103812_b12","article-title":"Estimation of gridded anthropogenic heat flux at the optimal scale by integrating SDGSAT-1 nighttime lights and geospatial data","volume":"125","author":"Guo","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103812_b13","article-title":"Potentiality of SDGSAT-1 glimmer imagery to investigate the spatial variability in nighttime lights","volume":"119","author":"Guo","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103812_b14","series-title":"Computer Vision\u2013ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20\u201324, 2016, Revised Selected Papers, Part I 13","first-page":"213","article-title":"Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture","author":"Hazirbas","year":"2017"},{"issue":"2","key":"10.1016\/j.jag.2024.103812_b15","doi-asserted-by":"crossref","first-page":"994","DOI":"10.1257\/aer.102.2.994","article-title":"Measuring economic growth from outer space","volume":"102","author":"Henderson","year":"2012","journal-title":"Am. Econ. Rev."},{"key":"10.1016\/j.jag.2024.103812_b16","article-title":"Village-level poverty identification using machine learning, high-resolution images, and geospatial data","volume":"107","author":"Hu","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103812_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2021.129558","article-title":"Evaluating the performance of LBSM data to estimate the gross domestic product of China at multiple scales: A comparison with NPP-VIIRS nighttime light data","volume":"328","author":"Huang","year":"2021","journal-title":"J. Clean. Prod."},{"issue":"1","key":"10.1016\/j.jag.2024.103812_b18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2018.4","article-title":"Gridded global datasets for gross domestic product and human development index over 1990\u20132015","volume":"5","author":"Kummu","year":"2018","journal-title":"Sci. Data"},{"issue":"11","key":"10.1016\/j.jag.2024.103812_b19","doi-asserted-by":"crossref","first-page":"1378","DOI":"10.3390\/rs11111378","article-title":"Geographically weighted machine learning and downscaling for high-resolution spatiotemporal estimations of wind speed","volume":"11","author":"Li","year":"2019","journal-title":"Remote Sens."},{"issue":"1","key":"10.1016\/j.jag.2024.103812_b20","doi-asserted-by":"crossref","first-page":"58","DOI":"10.3390\/land13010058","article-title":"Spatiotemporal distribution and fragmentation driving mechanism in paddy fields and dryland of urban agglomeration in the middle reaches of the Yangtze river","volume":"13","author":"Li","year":"2024","journal-title":"Land"},{"key":"10.1016\/j.jag.2024.103812_b21","article-title":"Deep learning in multimodal remote sensing data fusion: A comprehensive review","volume":"112","author":"Li","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"5","key":"10.1016\/j.jag.2024.103812_b22","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.3390\/rs15051285","article-title":"Refined estimation of potential GDP exposure in low-elevation coastal zones (LECZ) of China based on multi-source data and random forest","volume":"15","author":"Li","year":"2023","journal-title":"Remote Sens."},{"issue":"9","key":"10.1016\/j.jag.2024.103812_b23","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/ac19db","article-title":"Balance between poverty alleviation and air pollutant reduction in China","volume":"16","author":"Li","year":"2021","journal-title":"Environ. Res. Lett."},{"issue":"6","key":"10.1016\/j.jag.2024.103812_b24","doi-asserted-by":"crossref","first-page":"3057","DOI":"10.3390\/rs5063057","article-title":"Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China","volume":"5","author":"Li","year":"2013","journal-title":"Remote Sens."},{"issue":"1","key":"10.1016\/j.jag.2024.103812_b25","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1016\/j.asr.2019.09.035","article-title":"GDP spatialization in ningbo city based on NPP\/VIIRS night-time light and auxiliary data using random forest regression","volume":"65","author":"Liang","year":"2020","journal-title":"Adv. Space Res."},{"key":"10.1016\/j.jag.2024.103812_b26","article-title":"Dynamic monitoring and modeling of the growth-poverty-inequality trilemma in the Nile River Basin with consistent night-time data (2000\u20132020)","volume":"112","author":"Lin","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103812_b27","article-title":"Identifying and evaluating suburbs in China from 2012 to 2020 based on SNPP\u2013VIIRS nighttime light remotely sensed data","volume":"114","author":"Liu","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2024.103812_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112830","article-title":"A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data","volume":"270","author":"Lu","year":"2022","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.jag.2024.103812_b29","doi-asserted-by":"crossref","first-page":"194","DOI":"10.3390\/ijgi10030194","article-title":"A precision evaluation index system for remote sensing data sampling based on hexagonal discrete grids","volume":"10","author":"Ma","year":"2021","journal-title":"ISPRS Int. J. Geo-Inf."},{"key":"10.1016\/j.jag.2024.103812_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112408","article-title":"Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach","volume":"259","author":"Ma","year":"2021","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.jag.2024.103812_b31","doi-asserted-by":"crossref","first-page":"e1179","DOI":"10.1002\/hpm.2603","article-title":"Distribution of health facilities in Nigeria: implications and options for universal health coverage","volume":"33","author":"Makinde","year":"2018","journal-title":"Int. J. Health Plan. Manag."},{"key":"10.1016\/j.jag.2024.103812_b32","series-title":"Transforming Our World: The 2030 Agenda for Sustainable Development","author":"Nations","year":"2015"},{"issue":"3","key":"10.1016\/j.jag.2024.103812_b33","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1111\/asej.12278","article-title":"Do higher-quality nighttime lights and net primary productivity predict subnational GDP in developing countries? Evidence from the Philippines","volume":"36","author":"Pagaduan","year":"2022","journal-title":"Asian Econ. J."},{"key":"10.1016\/j.jag.2024.103812_b34","doi-asserted-by":"crossref","unstructured":"Reis, B., Maia, E., Praca, I., 2019. Selection and Performance Analysis of CICIDS2017 Features Importance. In: International Symposium on Foundations and Practice of Security.","DOI":"10.1007\/978-3-030-45371-8_4"},{"issue":"19","key":"10.1016\/j.jag.2024.103812_b35","doi-asserted-by":"crossref","first-page":"3136","DOI":"10.3390\/rs12193136","article-title":"Applications of remote sensing in precision agriculture: A review","volume":"12","author":"Sishodia","year":"2020","journal-title":"Remote Sens."},{"issue":"2","key":"10.1016\/j.jag.2024.103812_b36","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0107042","article-title":"Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data","volume":"10","author":"Stevens","year":"2015","journal-title":"PLoS One"},{"issue":"3","key":"10.1016\/j.jag.2024.103812_b37","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/S0921-8009(02)00097-6","article-title":"Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation","volume":"41","author":"Sutton","year":"2002","journal-title":"Ecol. Econ."},{"key":"10.1016\/j.jag.2024.103812_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2020.107260","article-title":"Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China","volume":"122","author":"Teng","year":"2021","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.jag.2024.103812_b39","article-title":"An ensemble method to generate high-resolution gridded population data for China from digital footprint and ancillary geospatial data","volume":"107","author":"Tu","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"12","key":"10.1016\/j.jag.2024.103812_b40","doi-asserted-by":"crossref","first-page":"580","DOI":"10.3390\/ijgi8120580","article-title":"Global mapping of GDP at 1 km2 using VIIRS nighttime satellite imagery","volume":"8","author":"Wang","year":"2019","journal-title":"ISPRS Int. J. Geo-Inf."},{"issue":"3","key":"10.1016\/j.jag.2024.103812_b41","doi-asserted-by":"crossref","first-page":"123","DOI":"10.3390\/ijgi12030123","article-title":"Generating gridded gross domestic product data for China using geographically weighted ensemble learning","volume":"12","author":"Xu","year":"2023","journal-title":"ISPRS Int. J. Geo-Inf."},{"issue":"5","key":"10.1016\/j.jag.2024.103812_b42","doi-asserted-by":"crossref","first-page":"1469","DOI":"10.3390\/su10051469","article-title":"Exploration of the industrial spatial linkages in urban agglomerations: A case of urban agglomeration in the middle reaches of the Yangtze river, China","volume":"10","author":"Yan","year":"2018","journal-title":"Sustainability"},{"issue":"5","key":"10.1016\/j.jag.2024.103812_b43","doi-asserted-by":"crossref","first-page":"574","DOI":"10.3390\/rs11050574","article-title":"Population mapping with multisensor remote sensing images and point-of-interest data","volume":"11","author":"Yang","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2024.103812_b44","article-title":"GeoUNet: A novel AI model for high-resolution mapping of ecological footprint","volume":"112","author":"Ye","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"7","key":"10.1016\/j.jag.2024.103812_b45","doi-asserted-by":"crossref","first-page":"673","DOI":"10.3390\/rs9070673","article-title":"GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery","volume":"9","author":"Zhao","year":"2017","journal-title":"Remote Sens."},{"issue":"3","key":"10.1016\/j.jag.2024.103812_b46","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1080\/15481603.2016.1276705","article-title":"Forecasting China\u2019s GDP at the pixel level using nighttime lights time series and population images","volume":"54","author":"Zhao","year":"2017","journal-title":"GISci. Remote Sens."},{"key":"10.1016\/j.jag.2024.103812_b47","doi-asserted-by":"crossref","first-page":"1055","DOI":"10.1007\/s12652-018-1011-0","article-title":"An analysis on the economic cooperation and the industrial synergy of the main river region: from the perspective of the Yangtze river economic zone","volume":"11","author":"Zhu","year":"2020","journal-title":"J. Ambient Intell. Hum. Comput."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843224001663?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843224001663?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,24]],"date-time":"2024-05-24T14:41:36Z","timestamp":1716561696000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843224001663"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":47,"alternative-id":["S1569843224001663"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2024.103812","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"High-resolution mapping of GDP using multi-scale feature fusion by integrating remote sensing and POI data","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2024.103812","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103812"}}