{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,22]],"date-time":"2025-02-22T00:43:10Z","timestamp":1740184990499,"version":"3.37.3"},"reference-count":91,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,10]],"date-time":"2023-11-10T00:00:00Z","timestamp":1699574400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100009171","name":"Natural Resources Conservation Service","doi-asserted-by":"publisher","award":["NR1871003XXXXC054"],"id":[{"id":"10.13039\/100009171","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000199","name":"U.S. Department of Agriculture","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000199","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.jag.2023.103564","type":"journal-article","created":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T13:52:36Z","timestamp":1700142756000},"page":"103564","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Winter-time cover crop identification: A remote sensing-based methodological framework for new and rapid data generation"],"prefix":"10.1016","volume":"125","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-5341-363X","authenticated-orcid":false,"given":"Zobaer","family":"Ahmed","sequence":"first","affiliation":[]},{"given":"Lawton","family":"Nalley","sequence":"additional","affiliation":[]},{"given":"Kristofor","family":"Brye","sequence":"additional","affiliation":[]},{"given":"V.","family":"Steven Green","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Popp","sequence":"additional","affiliation":[]},{"given":"Aaron M.","family":"Shew","sequence":"additional","affiliation":[]},{"given":"Lawson","family":"Connor","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2023.103564_b0010","first-page":"51","article-title":"Major Limitations of Satellite images","volume":"4","author":"Al-Wassai","year":"2013","journal-title":"J. Glob. Res. Comput. Sci."},{"key":"10.1016\/j.jag.2023.103564_b0015","doi-asserted-by":"crossref","DOI":"10.3389\/fclim.2020.576740","article-title":"A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine","volume":"2","author":"Ar\u00e9valo","year":"2020","journal-title":"Front. Clim"},{"key":"10.1016\/j.jag.2023.103564_b0020","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/S0034-4257(00)00126-7","article-title":"A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation","volume":"74","author":"Asner","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0025","doi-asserted-by":"crossref","DOI":"10.3390\/rs13101998","article-title":"Detecting winter cover crops and crop residues in the midwest us using machine learning classification of thermal and optical imagery","volume":"13","author":"Barnes","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0030","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.agee.2015.11.011","article-title":"Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States","volume":"218","author":"Basche","year":"2016","journal-title":"Agric. Ecosyst. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0035","doi-asserted-by":"crossref","unstructured":"Belgiu, M., Dr\u0103gu, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. https:\/\/doi.org\/10.1016\/j.isprsjprs.2016.01.011.","DOI":"10.1016\/j.isprsjprs.2016.01.011"},{"key":"10.1016\/j.jag.2023.103564_b0040","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1080\/10106049.2011.562309","article-title":"Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program","volume":"26","author":"Boryan","year":"2011","journal-title":"Geocarto Int."},{"key":"10.1016\/j.jag.2023.103564_b0045","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.rse.2017.03.029","article-title":"PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series","volume":"194","author":"Boschetti","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0050","unstructured":"Boumis, G., Peter, B., 2021. Time-Series Matrix (TSMx): A visualization tool for plotting multiscale temporal trends. https:\/\/doi.org\/10.7910\/DVN\/ZZDYM9."},{"key":"10.1016\/j.jag.2023.103564_b0055","doi-asserted-by":"crossref","first-page":"7447","DOI":"10.1126\/sciadv.abc7447","article-title":"A unified vegetation index for quantifying the terrestrial biosphere","volume":"7","author":"Camps-Valls","year":"2021","journal-title":"Sci. Adv."},{"key":"10.1016\/j.jag.2023.103564_b0060","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0034-4257(97)00104-1","article-title":"On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index","volume":"62","author":"Carlson","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0065","doi-asserted-by":"crossref","unstructured":"Cassman, K.G., Dobermann, A., Walters, D.T., 2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management. In: Ambio. Royal Swedish Academy of Sciences, pp. 132\u2013140. https:\/\/doi.org\/10.1579\/0044-7447-31.2.132.","DOI":"10.1579\/0044-7447-31.2.132"},{"key":"10.1016\/j.jag.2023.103564_b0070","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.isprsjprs.2021.08.015","article-title":"A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky-Golay filter","volume":"180","author":"Chen","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0075","doi-asserted-by":"crossref","unstructured":"Chen, W., Liu, L., Zhang, C., Wang, Jihua, Wang, Jindi, Pan, Y., 2004. Monitoring the seasonal bare soil areas in Beijing using multi-temporal TM images. In: Int. Geosci. Remote Sens. Symp. (IGARSS). pp. 3379\u20133382. https:\/\/doi.org\/10.1109\/igarss.2004.1370429.","DOI":"10.1109\/IGARSS.2004.1370429"},{"key":"10.1016\/j.jag.2023.103564_b0080","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.rse.2004.03.014","article-title":"A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter","volume":"91","author":"Chen","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0085","doi-asserted-by":"crossref","first-page":"1221","DOI":"10.1081\/CSS-100104110","article-title":"Using winter cover crops to improve soil and water quality","volume":"32","author":"Dabney","year":"2001","journal-title":"Commun. Soil Sci."},{"key":"10.1016\/j.jag.2023.103564_b0090","unstructured":"Dewitz, J., USGS, 2021. National Land Cover Database (NLCD) 2019 Products (ver. 2.0). U.S. Geological Survey data release. https:\/\/doi.org\/10.5066\/P9KZCM54."},{"key":"10.1016\/j.jag.2023.103564_b0095","unstructured":"English, L., Popp, J., 2022. Economic Contribution of the Agricultural Sector to the Arkansas Economy in 2020. https:\/\/bpb-us-e1.wpmucdn.com\/wordpressua.uark.edu\/dist\/3\/599\/files\/2023\/05\/1010_Contrib_Agri_sector_Ark_Econ_2021.pdf."},{"key":"10.1016\/j.jag.2023.103564_b0100","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.rse.2017.03.026","article-title":"Cloud detection algorithm comparison and validation for operational Landsat data products","volume":"194","author":"Foga","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0105","article-title":"Automated registration and orthorectification package for Landsat and Landsat-like data processing","volume":"3","author":"Gao","year":"2009","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0110","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1080\/22797254.2018.1455540","article-title":"A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics","volume":"51","author":"Ghazaryan","year":"2018","journal-title":"Eur. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0115","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1016\/S0273-1177(97)01133-2","article-title":"Remote sensing of chlorophyll concentration in higher plant leaves","volume":"22","author":"Gitelson","year":"1998","journal-title":"Adv. Space Res."},{"key":"10.1016\/j.jag.2023.103564_b0120","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","article-title":"Google Earth Engine: Planetary-scale geospatial analysis for everyone","volume":"202","author":"Gorelick","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0125","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1080\/15481603.2019.1690780","article-title":"Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud","volume":"57","author":"Gumma","year":"2020","journal-title":"GIsci. Remote. Sens."},{"key":"10.1016\/j.jag.2023.103564_b0130","first-page":"1","article-title":"Mapping conservation management practices and outcomes in the corn belt using the operational tillage information system (Optis) and the denitrification\u2013decomposition (DNDC) model","volume":"9","author":"Hagen","year":"2020","journal-title":"Land (Basel)"},{"key":"10.1016\/j.jag.2023.103564_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2020.138869","article-title":"Transfer Learning for Crop classification with Cropland Data Layer data (CDL) as training samples","volume":"733","author":"Hao","year":"2020","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.jag.2023.103564_b0140","doi-asserted-by":"crossref","first-page":"340","DOI":"10.2489\/jswc.70.6.340","article-title":"Remote sensing to monitor cover crop adoption in southeastern Pennsylvania","volume":"70","author":"Hively","year":"2015","journal-title":"J. Soils Water Conserv."},{"key":"10.1016\/j.jag.2023.103564_b0145","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A Soil-Adjusted Vegetation Index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0150","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/S0034-4257(96)00112-5","article-title":"A comparison of vegetation indices over a global set of TM images for EOS-MODIS","volume":"59","author":"Huete","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0155","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/s13157-012-0365-x","article-title":"Wetland losses due to row crop expansion in the dakota prairie pothole region","volume":"33","author":"Johnston","year":"2013","journal-title":"Wetlands"},{"key":"10.1016\/j.jag.2023.103564_b0160","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1016\/j.rse.2010.10.011","article-title":"Analysis of monotonic greening and browning trends from global NDVI time-series","volume":"115","author":"Jong","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0165","doi-asserted-by":"crossref","DOI":"10.3390\/rs13142689","article-title":"Assessment of the spatial and temporal patterns of cover crops using remote sensing","volume":"13","author":"Kc","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0170","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1080\/22797254.2020.1786466","article-title":"Use of MODIS EVI to map crop phenology, identify cropping systems, detect land use change and drought risk in Ethiopia\u2013an application of Google Earth Engine","volume":"53","author":"Kibret","year":"2020","journal-title":"Eur. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0175","doi-asserted-by":"crossref","first-page":"279","DOI":"10.2489\/jswc.69.4.279","article-title":"Cover crops in the upper midwestern United States: Potential adoption and reduction of nitrate leaching in the mississippi river basin","volume":"69","author":"Kladivko","year":"2014","journal-title":"J. Soils Water Conserv."},{"key":"10.1016\/j.jag.2023.103564_b0180","doi-asserted-by":"crossref","first-page":"113","DOI":"10.17221\/45\/2012-SWR","article-title":"Effects of Agricultural Conservation Practices on Oxbow Lake Watersheds in the Mississippi River Alluvial Plain","volume":"8","author":"Knight","year":"2013","journal-title":"Soil & Water Res"},{"key":"10.1016\/j.jag.2023.103564_b0185","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/10\/4\/044003","article-title":"Cropland expansion outpaces agricultural and biofuel policies in the United States","volume":"10","author":"Lark","year":"2015","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.jag.2023.103564_b0190","first-page":"224","article-title":"Measuring land-use and land-cover change using the U.S. department of agriculture\u2019s cropland data layer: Cautions and recommendations","volume":"62","author":"Lark","year":"2017","journal-title":"Int. J. Appl. Earth Obs. Geoinf"},{"key":"10.1016\/j.jag.2023.103564_b0195","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/rs13050968","article-title":"Accuracy, bias, and improvements in mapping crops and cropland across the united states using the usda cropland data layer","volume":"13","author":"Lark","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0200","doi-asserted-by":"crossref","unstructured":"Le\u2019an, Q., Manchun, L., Zhenjie, C., Junjun, Z., 2021. A Modified Self-adaptive Method for Mapping Annual 30-m Land Use\/Land Cover Using Google Earth Engine: A Case Study of Yangtze River Delta. Chin. Geogr. Sci. 31, 782\u2013794. https:\/\/doi.org\/10.1007\/s11769-021-1226-4.","DOI":"10.1007\/s11769-021-1226-4"},{"key":"10.1016\/j.jag.2023.103564_b0205","article-title":"Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment","author":"Lepot","year":"2017","journal-title":"Water (Switzerland)"},{"key":"10.1016\/j.jag.2023.103564_b0210","doi-asserted-by":"crossref","first-page":"16091","DOI":"10.3390\/rs71215820","article-title":"Object-based crop classification with Landsat-MODIS enhanced time-series data","volume":"7","author":"Li","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0215","doi-asserted-by":"crossref","DOI":"10.1038\/s41597-022-01169-w","article-title":"Validation and refinement of cropland data layer using a spatial-temporal decision tree algorithm","volume":"9","author":"Lin","year":"2022","journal-title":"Sci. Data"},{"key":"10.1016\/j.jag.2023.103564_b0220","doi-asserted-by":"crossref","DOI":"10.3389\/fevo.2022.918756","article-title":"Quality Assessment of Ecological Environment Based on Google Earth Engine: A Case Study of the Zhoushan Islands","volume":"10","author":"Liu","year":"2022","journal-title":"Front. Ecol. Evol."},{"key":"10.1016\/j.jag.2023.103564_b0225","doi-asserted-by":"crossref","first-page":"1823","DOI":"10.1016\/j.rse.2009.04.016","article-title":"Vegetation dynamics from NDVI time series analysis using the wavelet transform","volume":"113","author":"Mart\u00ednez","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0230","doi-asserted-by":"crossref","unstructured":"Masek, J., Ju, J., Roger, J.-C., Skakun, S., Claverie, M., Dungan, J., 2018. Harmonized Landsat\/Sentinel-2 Products for Land Monitoring, in: IEEE Int. Geo. Rem. Sens. Symp. IEEE, pp. 8163\u20138165. https:\/\/doi.org\/10.1109\/IGARSS.2018.8517760.","DOI":"10.1109\/IGARSS.2018.8517760"},{"key":"10.1016\/j.jag.2023.103564_b0235","doi-asserted-by":"crossref","DOI":"10.3390\/rs10071079","article-title":"Multitemporal cloud masking in the Google Earth Engine","volume":"10","author":"Mateo-Garc\u00eda","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0240","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1080\/01431169608948714","article-title":"The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features","volume":"17","author":"McFeeters","year":"1996","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0245","doi-asserted-by":"crossref","DOI":"10.3390\/rs12030449","article-title":"Crop-type classification for long-term modeling: An integrated remote sensing and machine learning approach","volume":"12","author":"Momm","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0250","unstructured":"Nitze, I., Schulthess, U., Asche, H., 2012. Comparison of Machine Learning Algorithms Random Forest, Artificial Neural Network and Support Vector Machine to Maximum Likelihood for Supervised Crop Type Classification, in: Proceedings of the 4th GEOBIA. pp. 1\u201335. https:\/\/doi.org\/http:\/\/mtc-m16c.sid.inpe.br\/col\/sid.inpe.br\/mtc-m18\/2012\/05.15.13.21\/doc\/015.pdf."},{"key":"10.1016\/j.jag.2023.103564_b0255","doi-asserted-by":"crossref","first-page":"421","DOI":"10.5721\/EuJRS20124535","article-title":"Evaluation of random forest method for agricultural crop classification","volume":"45","author":"Ok","year":"2012","journal-title":"Eur. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0260","first-page":"110","article-title":"Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud","volume":"81","author":"Oliphant","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf"},{"key":"10.1016\/j.jag.2023.103564_b0265","doi-asserted-by":"crossref","unstructured":"Oshiro, T.M., Santoro Perez, P., Baranauskas, J.A., 2012. How Many Trees in a Random Forest?, in: Perner, P. (Ed.), Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science. pp. 154\u2013168. https:\/\/doi.org\/10.1007\/978-3-642-31537-4_13.","DOI":"10.1007\/978-3-642-31537-4_13"},{"key":"10.1016\/j.jag.2023.103564_b0270","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01431160412331269698","article-title":"Random forest classifier for remote sensing classification","volume":"26","author":"Pal","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0275","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.rse.2011.10.011","article-title":"Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index","volume":"119","author":"Pan","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0280","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1016\/j.rse.2011.01.009","article-title":"Object-based crop identification using multiple vegetation indices, textural features and crop phenology","volume":"115","author":"Pe\u00f1a-Barrag\u00e1n","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0285","doi-asserted-by":"crossref","DOI":"10.3390\/rs12152411","article-title":"Land cover classification using google earth engine and random forest classifier-the role of image composition","volume":"12","author":"Phan","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0290","doi-asserted-by":"crossref","first-page":"1922","DOI":"10.1111\/gcb.14619","article-title":"Plant phenology and global climate change: Current progresses and challenges","volume":"25","author":"Piao","year":"2019","journal-title":"Glob Chang Biol"},{"key":"10.1016\/j.jag.2023.103564_b0295","unstructured":"Planet Team, 2017. Planet Application Program Interface: In Space for Life on Earth. https:\/\/doi.org\/api.planet.com."},{"key":"10.1016\/j.jag.2023.103564_b0300","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.agee.2012.11.011","article-title":"Evidence for increased monoculture cropping in the Central United States","volume":"165","author":"Plourde","year":"2013","journal-title":"Agric. Ecosyst. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0305","first-page":"88","article-title":"Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States","volume":"39","author":"Prabhakara","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf"},{"key":"10.1016\/j.jag.2023.103564_b0310","doi-asserted-by":"crossref","first-page":"266","DOI":"10.2134\/agronj2015.0288","article-title":"Does the U.S. cropland data layer provide an accurate benchmark for land-use change estimates?","volume":"108","author":"Reitsma","year":"2016","journal-title":"Agron J."},{"key":"10.1016\/j.jag.2023.103564_b0315","unstructured":"Roberts, T., Research, G., Kelsey, A., Graduate, H., Assistant, R., Wright, H., 2018. Understanding Cover Crops. https:\/\/www.uaex.uada.edu\/farm-ranch\/crops-commercial-horticulture\/horticulture\/FSA-2156.pdf."},{"key":"10.1016\/j.jag.2023.103564_b0320","unstructured":"Rouse, R.W.H., Haas, J.A.W., Deering, D.W., 1974. Monitoring Vegetation Systems in the Great Plains with ERTS, in: 3rd Earth Resource Technology Satellite (ERTS) Symposium. pp. 48\u201362. https:\/\/ntrs.nasa.gov\/citations\/19740022614."},{"key":"10.1016\/j.jag.2023.103564_b0325","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2018.06.038","article-title":"Robust Landsat-based crop time series modelling","volume":"238","author":"Roy","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0330","unstructured":"Rundquist, S., Carlson, S., 2017. Mapping Cover Crops on Corn and Soybeans in Illinois, Indiana and Iowa, 2015\u20132016. https:\/\/www.ewg.org\/research\/mapping-cover-crops-corn-and-soybeans-illinois-indiana-and-iowa-2015-2016."},{"key":"10.1016\/j.jag.2023.103564_b0335","article-title":"Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring","volume":"96","author":"Sadeh","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf"},{"key":"10.1016\/j.jag.2023.103564_b0340","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compag.2014.08.005","article-title":"Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt","volume":"108","author":"Sahajpal","year":"2014","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.jag.2023.103564_b0345","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.rse.2005.03.008","article-title":"A crop phenology detection method using time-series MODIS data","volume":"96","author":"Sakamoto","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0350","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1300\/J144v08n01_04","article-title":"The Role of Cover Crops in North American Cropping Systems","volume":"8","author":"Sarrantonio","year":"2003","journal-title":"J. Crop Prod."},{"key":"10.1016\/j.jag.2023.103564_b0355","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/aac4c8","article-title":"Satellite detection of cover crops and their effects on crop yield in the Midwestern United States","volume":"13","author":"Seifert","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.jag.2023.103564_b0360","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1080\/15481603.2021.1947623","article-title":"Google Earth Engine for large-scale land use and land cover mapping: an object-based classification approach using spectral, textural and topographical factors","volume":"58","author":"Shafizadeh-Moghadam","year":"2021","journal-title":"GIsci. Remote. Sens."},{"key":"10.1016\/j.jag.2023.103564_b0365","doi-asserted-by":"crossref","unstructured":"Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., Skakun, S., 2017. Large scale crop classification using Google earth engine platform, in: IEEE Int. Geo. Rem. Sens. Symp. pp. 3696\u20133699. https:\/\/doi.org\/doi: 10.1109\/IGARSS.2017.8127801.","DOI":"10.1109\/IGARSS.2017.8127801"},{"key":"10.1016\/j.jag.2023.103564_b0370","first-page":"1","article-title":"A 30 m Resolution Distribution Map of Maize for China Based on Landsat and Sentinel Images","author":"Shen","year":"2022","journal-title":"J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0375","doi-asserted-by":"crossref","DOI":"10.3390\/rs11101235","article-title":"Identifying dry-season rice-planting patterns in bangladesh using the landsat archive","volume":"11","author":"Shew","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0380","doi-asserted-by":"crossref","first-page":"1622","DOI":"10.1016\/j.agwat.2011.05.015","article-title":"Cover crop effects on nitrogen load in tile drainage from Walnut Creek Iowa using root zone water quality (RZWQ) model","volume":"98","author":"Singer","year":"2011","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.jag.2023.103564_b0385","doi-asserted-by":"crossref","first-page":"121","DOI":"10.5721\/EuJRS20164907","article-title":"Measuring intensity of tillage and plant residue cover using remote sensing","volume":"49","author":"Sonmez","year":"2016","journal-title":"Eur. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0390","doi-asserted-by":"crossref","DOI":"10.1117\/1.JRS.6.063590","article-title":"Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product","volume":"6","author":"Stern","year":"2012","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0395","doi-asserted-by":"crossref","unstructured":"Tao, Y., You, F., 2019. Prediction of Cover Crop Adoption through Machine Learning Models using Satellite-derived Data, in: IFAC-PapersOnLine. Elsevier B.V., pp. 137\u2013142. https:\/\/doi.org\/10.1016\/j.ifacol.2019.12.511.","DOI":"10.1016\/j.ifacol.2019.12.511"},{"key":"10.1016\/j.jag.2023.103564_b0400","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/S0034-4257(01)00248-6","article-title":"Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets","volume":"78","author":"Teillet","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0405","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111943","article-title":"Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed","volume":"248","author":"Thieme","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0410","unstructured":"USDA ERS, 2014. Agricultural Act of 2014: Highlights and Implications. https:\/\/www.ers.usda.gov\/agricultural-act-of-2014-highlights-and-implications\/."},{"key":"10.1016\/j.jag.2023.103564_b0415","unstructured":"USDA ERS, 2018. Agriculture Improvement Act of 2018: Highlights and Implications. https:\/\/www.congress.gov\/115\/bills\/hr2\/BILLS-115hr2enr.pdf."},{"key":"10.1016\/j.jag.2023.103564_b0420","unstructured":"USDA, 2015. Cool Season Cover Crop Species and Planting Dates and Techniques Plant Materials Technical Note. USDA-NRCS. https:\/\/southerncovercrops.org\/wp-content\/uploads\/2018\/11\/TX-planting-cool-Season-Cover-crops.pdf."},{"key":"10.1016\/j.jag.2023.103564_b0425","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.rse.2016.04.008","article-title":"Preliminary analysis of the performance of the Landsat 8\/OLI land surface reflectance product","volume":"185","author":"Vermote","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103564_b0430","unstructured":"Wallander, S., Smith, D., Bowman, M., Claassen, R., 2021. Cover Crop Trends, Programs, and Practices in the United States."},{"key":"10.1016\/j.jag.2023.103564_b0435","doi-asserted-by":"crossref","first-page":"20307","DOI":"10.1038\/s41598-022-24413-0","article-title":"Dynamic monitoring and analysis of factors influencing ecological environment quality in northern Anhui, China, based on the Google Earth Engine","volume":"12","author":"Wang","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.jag.2023.103564_b0440","doi-asserted-by":"crossref","first-page":"3025","DOI":"10.1080\/01431160600589179","article-title":"Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery","volume":"27","author":"Xu","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0445","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.108258","article-title":"Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas","volume":"132","author":"Yan","year":"2021","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.jag.2023.103564_b0450","doi-asserted-by":"crossref","DOI":"10.3389\/fenvs.2020.00066","article-title":"Trends in Land Use, Irrigation, and Streamflow Alteration in the Mississippi River Alluvial Plain","volume":"8","author":"Yasarer","year":"2020","journal-title":"Front. Environ. Sci."},{"key":"10.1016\/j.jag.2023.103564_b0455","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1080\/01431160304987","article-title":"Use of normalized difference built-up index in automatically mapping urban areas from TM imagery","volume":"24","author":"Zha","year":"2003","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2023.103564_b0460","article-title":"Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer","volume":"102","author":"Zhang","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf"}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223003886?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223003886?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,4]],"date-time":"2024-03-04T09:37:28Z","timestamp":1709545048000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843223003886"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":91,"alternative-id":["S1569843223003886"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2023.103564","relation":{},"ISSN":["1569-8432"],"issn-type":[{"type":"print","value":"1569-8432"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Winter-time cover crop identification: A remote sensing-based methodological framework for new and rapid data generation","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2023.103564","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103564"}}