{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,22]],"date-time":"2025-02-22T00:43:53Z","timestamp":1740185033254,"version":"3.37.3"},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,10]],"date-time":"2023-11-10T00:00:00Z","timestamp":1699574400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100004421","name":"World Bank Group","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100004421","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100018227","name":"National Research Foundation of Ukraine","doi-asserted-by":"publisher","award":["2020.02\/0292"],"id":[{"id":"10.13039\/100018227","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000780","name":"European Commission","doi-asserted-by":"publisher","award":["ENI\/2017\/387\u2013093","ENI\/2020\/418\u2013654"],"id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007684","name":"Ministry of Education and Science of Ukraine","doi-asserted-by":"publisher","award":["\u0420\u041d\/27-2023"],"id":[{"id":"10.13039\/501100007684","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.jag.2023.103562","type":"journal-article","created":{"date-parts":[[2023,11,14]],"date-time":"2023-11-14T16:40:43Z","timestamp":1699980043000},"page":"103562","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Assessing damage to agricultural fields from military actions in Ukraine: An integrated approach using statistical indicators and machine learning"],"prefix":"10.1016","volume":"125","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9704-9702","authenticated-orcid":false,"given":"Nataliia","family":"Kussul","sequence":"first","affiliation":[]},{"given":"Sofiia","family":"Drozd","sequence":"additional","affiliation":[]},{"given":"Hanna","family":"Yailymova","sequence":"additional","affiliation":[]},{"given":"Andrii","family":"Shelestov","sequence":"additional","affiliation":[]},{"given":"Guido","family":"Lemoine","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3198-0083","authenticated-orcid":false,"given":"Klaus","family":"Deininger","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"24","key":"10.1016\/j.jag.2023.103562_b0005","doi-asserted-by":"crossref","first-page":"6239","DOI":"10.3390\/rs14246239","article-title":"War related building damage assessment in Kyiv, Ukraine, using Sentinel-1 Radar and Sentinel-2 Optical Images","volume":"14","author":"Aimaiti","year":"2022","journal-title":"Remote Sens."},{"issue":"20","key":"10.1016\/j.jag.2023.103562_b0010","doi-asserted-by":"crossref","first-page":"2384","DOI":"10.3390\/rs11202384","article-title":"Assessing multiple years\u2019 spatial variability of crop yields using satellite vegetation indices","volume":"11","author":"Ali","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103562_b0015","doi-asserted-by":"crossref","first-page":"3323","DOI":"10.3390\/w12123323","article-title":"Impact of Land Cover Change Due to Armed Conflicts on Soil Erosion in the Basin of the Northern Al-Kabeer River in Syria Using the RUSLE Model","volume":"12","author":"Almohamad","year":"2020","journal-title":"Water"},{"key":"10.1016\/j.jag.2023.103562_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.worlddev.2021.105613","article-title":"The long-term impact of the Vietnam War on agricultural productivity","volume":"146","author":"Appau","year":"2021","journal-title":"World Dev."},{"key":"10.1016\/j.jag.2023.103562_b0025","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1007\/s11119-018-9596-z","article-title":"Mapping within-field variability in wheat yield and biomass using remote sensing vegetation indices","volume":"20","author":"Campos","year":"2019","journal-title":"Precis. Agric."},{"issue":"3","key":"10.1016\/j.jag.2023.103562_b0030","first-page":"431","article-title":"Using known map category marginal frequencies to improve estimates of thematic map accuracy","volume":"48","author":"Card","year":"1982","journal-title":"Photogramm. Eng. Remote Sens."},{"issue":"1","key":"10.1016\/j.jag.2023.103562_b0035","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Congalton","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2023.103562_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.foodpol.2023.102418","article-title":"Quantifying war-induced crop losses in Ukraine in near real time to strengthen local and global food security","author":"Deininger","year":"2023","journal-title":"Food Policy"},{"issue":"1\u20132","key":"10.1016\/j.jag.2023.103562_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0004-3702(99)00094-6","article-title":"Unsupervised stratification of cross-validation for accuracy estimation","volume":"116","author":"Diamantidis","year":"2000","journal-title":"Artif. Intell."},{"key":"10.1016\/j.jag.2023.103562_b0050","article-title":"Detection and mapping of artillery craters with very high spatial resolution satellite imagery and deep learning","volume":"100092","author":"Duncan","year":"2023","journal-title":"Sci. Remote Sens."},{"key":"10.1016\/j.jag.2023.103562_b0055","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/aa673a","article-title":"How conflict affects land use: agricultural activity in areas seized by the Islamic State","volume":"12","author":"Eklund","year":"2017","journal-title":"Environ. Res. Lett."},{"issue":"1","key":"10.1016\/j.jag.2023.103562_b0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11676-020-01155-1","article-title":"A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing","volume":"32","author":"Huang","year":"2021","journal-title":"J. For. Res."},{"key":"10.1016\/j.jag.2023.103562_b0075","doi-asserted-by":"crossref","unstructured":"Kruse, C. et al., 2019 Marked point processes for the automatic detection of bomb craters in aerial wartime images. In: Vosselman, G.; Oude Elberink, S.J.; Yang, M.Y. (Eds.): ISPRS Geospatial Week 2019. G\u00f6ttingen : Copernicus, 2019 (The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; 42-2\/W13), S. 51-60.Doi: Doi: 10.5194\/isprs-archives-XLII-2-W13-51-2019.","DOI":"10.5194\/isprs-archives-XLII-2-W13-51-2019"},{"issue":"5","key":"10.1016\/j.jag.2023.103562_b0080","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1615\/JAutomatInfScien.v48.i5.40","article-title":"Land cover changes analysis based on deep machine learning technique","volume":"48","author":"Kussul","year":"2016","journal-title":"J. Autom. Inf. Sci."},{"key":"10.1016\/j.jag.2023.103562_b0085","doi-asserted-by":"crossref","first-page":"778","DOI":"10.1109\/LGRS.2017.2681128","article-title":"Deep Learning Classification of Land Cover and Crop Types Using. Remote Sensing Data","volume":"14","author":"Kussul","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2023.103562_b0090","doi-asserted-by":"crossref","unstructured":"Kussul N. et al., 2022. Detection of War-Damaged Agricultural Fields of Ukraine Based on Vegetation Indices Using Sentinel-2 Data. 2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, pp. 1-5,Doi: 10.1109\/DESSERT58054.2022.10018739.","DOI":"10.1109\/DESSERT58054.2022.10018739"},{"key":"10.1016\/j.jag.2023.103562_b0095","series-title":"12th International Conference on Dependable Systems, Services and Technologies (DESSERT)","first-page":"1","article-title":"EO4UA Initiative: Scientific European Support of Ukrainian Scientific Community","author":"Kuzin","year":"2022"},{"year":"2015","series-title":"Remote sensing and image interpretation","author":"Lillesand","key":"10.1016\/j.jag.2023.103562_b0100"},{"issue":"10","key":"10.1016\/j.jag.2023.103562_b0105","doi-asserted-by":"crossref","first-page":"1810","DOI":"10.3390\/land11101810","article-title":"Spatiotemporal Analysis and War Impact Assessment of Agricultural Land in Ukraine Using RS and GIS Technology","volume":"11","author":"Ma","year":"2022","journal-title":"Land"},{"key":"10.1016\/j.jag.2023.103562_b0110","doi-asserted-by":"crossref","unstructured":"Mueller H. et al., 2021. Monitoring war destruction from space using machine learning. Proceedings of the national academy of sciences, 118(23), e2025400118.","DOI":"10.1073\/pnas.2025400118"},{"key":"10.1016\/j.jag.2023.103562_b0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2022.155865","article-title":"Russian-Ukrainian war impacts the total environment","volume":"837","author":"Pereira","year":"2022","journal-title":"Sci. Total Environ."},{"issue":"5","key":"10.1016\/j.jag.2023.103562_b0125","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1177\/0022343310378914","article-title":"Introducing ACLED: An Armed Conflict Location and Event Dataset","volume":"47","author":"Raleigh","year":"2010","journal-title":"J. Peace Res."},{"key":"10.1016\/j.jag.2023.103562_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2022.157932","article-title":"Environmental damages due to war in Ukraine: A perspective","volume":"850","author":"Rawtani","year":"2022","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.jag.2023.103562_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2020.107124","article-title":"Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling","volume":"121","author":"Shammi","year":"2021","journal-title":"Ecol. Ind."},{"key":"10.1016\/j.jag.2023.103562_b0140","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1109\/TBDATA.2019.2940237","article-title":"Cloud Approach to Automated Crop Classification Using Sentinel-1 Imagery","volume":"6","author":"Shelestov","year":"2020","journal-title":"IEEE Trans. Big Data"},{"key":"10.1016\/j.jag.2023.103562_b0145","doi-asserted-by":"crossref","unstructured":"Shelestov A. et al., 2017. Exploring Google Earth Engine Platform for Big Data. Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5 10.3389\/feart.2017.00017.","DOI":"10.3389\/feart.2017.00017"},{"key":"10.1016\/j.jag.2023.103562_b0150","article-title":"Satellite data reveal cropland losses in South-Eastern Ukraine under military conflict","volume":"305","author":"Skakun","year":"2019","journal-title":"Front. Earth Sci."},{"key":"10.1016\/j.jag.2023.103562_b0155","doi-asserted-by":"crossref","unstructured":"Skakun S. et al., 2022. High-Impact Hot Spots of Land Cover Land Use Change in Ukraine. 2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, pp. 1-5,Doi: 10.1109\/DESSERT58054.2022.10018657.","DOI":"10.1109\/DESSERT58054.2022.10018657"},{"issue":"10","key":"10.1016\/j.jag.2023.103562_b0160","doi-asserted-by":"crossref","first-page":"2078","DOI":"10.3390\/agronomy11102078","article-title":"Detection of Crop Hail Damage with a Machine Learning Algorithm Using Time Series of Remote Sensing Data","volume":"11","author":"Sosa","year":"2021","journal-title":"Agronomy"},{"issue":"3","key":"10.1016\/j.jag.2023.103562_b0165","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1002\/ldr.4502","article-title":"Impact of armed conflict on land use and land cover changes in global border areas","volume":"34","author":"Zheng","year":"2022","journal-title":"Land Degrad. Dev."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223003862?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223003862?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,4]],"date-time":"2024-03-04T09:36:53Z","timestamp":1709545013000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843223003862"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":30,"alternative-id":["S1569843223003862"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2023.103562","relation":{},"ISSN":["1569-8432"],"issn-type":[{"type":"print","value":"1569-8432"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Assessing damage to agricultural fields from military actions in Ukraine: An integrated approach using statistical indicators and machine learning","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2023.103562","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 World Bank. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103562"}}