{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T16:35:54Z","timestamp":1742402154055,"version":"3.37.3"},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,8]],"date-time":"2023-07-08T00:00:00Z","timestamp":1688774400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100009103","name":"Education Department of Shaanxi Province","doi-asserted-by":"publisher","award":["21JK0928"],"id":[{"id":"10.13039\/501100009103","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41971309","42101342","U2243205"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.jag.2023.103421","type":"journal-article","created":{"date-parts":[[2023,7,21]],"date-time":"2023-07-21T00:58:34Z","timestamp":1689901114000},"page":"103421","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["A three-step machine learning approach for algal bloom detection using stationary RGB camera images"],"prefix":"10.1016","volume":"122","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0168-4216","authenticated-orcid":false,"given":"Zhenyu","family":"Tan","sequence":"first","affiliation":[]},{"given":"Chen","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4615-174X","authenticated-orcid":false,"given":"Yinguo","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Chenxi","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Hongtao","family":"Duan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2023.103421_b1","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.jglr.2013.04.005","article-title":"The MERIS maximum chlorophyll index; its merits and limitations for inland water algal bloom monitoring","volume":"39","author":"Binding","year":"2013","journal-title":"J. Great Lakes Res."},{"issue":"4","key":"10.1016\/j.jag.2023.103421_b2","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs","volume":"40","author":"Chen","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jag.2023.103421_b3","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1016\/j.watres.2017.06.022","article-title":"MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source","volume":"122","author":"Duan","year":"2017","journal-title":"Water Res."},{"key":"10.1016\/j.jag.2023.103421_b4","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.asoc.2018.05.018","article-title":"A survey on deep learning techniques for image and video semantic segmentation","volume":"70","author":"Garcia-Garcia","year":"2018","journal-title":"Appl. Soft Comput."},{"issue":"8","key":"10.1016\/j.jag.2023.103421_b5","doi-asserted-by":"crossref","first-page":"1298","DOI":"10.3390\/s16081298","article-title":"A comprehensive review on water quality parameters estimation using remote sensing techniques","volume":"16","author":"Gholizadeh","year":"2016","journal-title":"Sensors-Basel"},{"year":"2020","series-title":"Metrics for multi-class classification: An overview","author":"Grandini","key":"10.1016\/j.jag.2023.103421_b6"},{"issue":"2","key":"10.1016\/j.jag.2023.103421_b7","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1038\/s41561-021-00887-x","article-title":"Global mapping reveals increase in lacustrine algal blooms over the past decade","volume":"15","author":"Hou","year":"2022","journal-title":"Nat. Geosci."},{"key":"10.1016\/j.jag.2023.103421_b8","series-title":"2019 IEEE\/CVF International Conference on Computer Vision","first-page":"1314","article-title":"Searching for MobileNetV3","author":"Howard","year":"2019"},{"issue":"10","key":"10.1016\/j.jag.2023.103421_b9","doi-asserted-by":"crossref","first-page":"2118","DOI":"10.1016\/j.rse.2009.05.012","article-title":"A novel ocean color index to detect floating algae in the global oceans","volume":"113","author":"Hu","year":"2009","journal-title":"Remote Sens. Environ."},{"issue":"8","key":"10.1016\/j.jag.2023.103421_b10","doi-asserted-by":"crossref","first-page":"3705","DOI":"10.1007\/s12665-013-2764-6","article-title":"Detection of algal bloom and factors influencing its formation in taihu lake from 2000 to 2011 by MODIS","volume":"71","author":"Huang","year":"2013","journal-title":"Environ. Earth Sci."},{"key":"10.1016\/j.jag.2023.103421_b11","first-page":"1","article-title":"How to model algal blooms in any lake on earth","volume":"36","author":"Janssen","year":"2019","journal-title":"Curr. Opin. Green Sustain. Chem."},{"issue":"21","key":"10.1016\/j.jag.2023.103421_b12","doi-asserted-by":"crossref","first-page":"4347","DOI":"10.3390\/rs13214347","article-title":"A meta-analysis on harmful algal bloom (HAB) detection and monitoring: A remote sensing perspective","volume":"13","author":"Khan","year":"2021","journal-title":"Remote Sens."},{"issue":"4","key":"10.1016\/j.jag.2023.103421_b13","doi-asserted-by":"crossref","first-page":"35","DOI":"10.3390\/drones2040035","article-title":"UAVs in support of algal bloom research: A review of current applications and future opportunities","volume":"2","author":"Kislik","year":"2018","journal-title":"Drones"},{"key":"10.1016\/j.jag.2023.103421_b14","series-title":"2017 IEEE International Conference on Computer Vision","first-page":"2980","article-title":"Focal loss for dense object detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.jag.2023.103421_b15","series-title":"Advances in Neural Information Processing Systems, Vol. 29","article-title":"Understanding the effective receptive field in deep convolutional neural networks","author":"Luo","year":"2016"},{"issue":"3","key":"10.1016\/j.jag.2023.103421_b16","doi-asserted-by":"crossref","first-page":"427","DOI":"10.3390\/rs13030427","article-title":"Spatio-temporal variations and driving forces of harmful algal blooms in chaohu lake: A multi-source remote sensing approach","volume":"13","author":"Ma","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103421_b17","first-page":"335","article-title":"Monitoring levels of cyanobacterial blooms using the visual cyanobacteria index (VCI) and floating algae index (FAI)","volume":"38","author":"Oyama","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103421_b18","first-page":"69","article-title":"A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom","volume":"66","author":"Page","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103421_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2022.103731","article-title":"Detection and localization of fugitive emissions in industrial plants using surveillance cameras","volume":"142","author":"Pedrayes","year":"2022","journal-title":"Comput. Ind."},{"key":"10.1016\/j.jag.2023.103421_b20","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"year":"2018","series-title":"Algae detection using computer vision and deep learning","author":"Samantaray","key":"10.1016\/j.jag.2023.103421_b21"},{"key":"10.1016\/j.jag.2023.103421_b22","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016"},{"key":"10.1016\/j.jag.2023.103421_b23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2022.3230439","article-title":"A robust model for MODIS and landsat image fusion considering input noise","volume":"60","author":"Tan","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2023.103421_b24","first-page":"1","article-title":"Deep learning for computer vision: A brief review","volume":"2018","author":"Voulodimos","year":"2018","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.jag.2023.103421_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2021.127312","article-title":"A novel quality control model of rainfall estimation with videos \u2013 a survey based on multi-surveillance cameras","volume":"605","author":"Wang","year":"2022","journal-title":"J. Hydrol."},{"issue":"2","key":"10.1016\/j.jag.2023.103421_b26","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1504\/IJSNET.2015.071633","article-title":"Monitoring algal blooms using active learning camera sensor networks","volume":"19","author":"Wang","year":"2015","journal-title":"Int. J. Sens. Netw."},{"key":"10.1016\/j.jag.2023.103421_b27","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. CBAM: Convolutional Block Attention Module. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 3\u201319. http:\/\/dx.doi.org\/10.48550\/arXiv.1807.06521.","DOI":"10.1007\/978-3-030-01234-2_1"},{"issue":"4","key":"10.1016\/j.jag.2023.103421_b28","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s10661-019-7365-8","article-title":"A review on drone-based harmful algae blooms monitoring","volume":"191","author":"Wu","year":"2019","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.jag.2023.103421_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.watres.2021.117786","article-title":"Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations","volume":"207","author":"Zhang","year":"2021","journal-title":"Water Res."},{"issue":"8","key":"10.1016\/j.jag.2023.103421_b30","doi-asserted-by":"crossref","first-page":"10523","DOI":"10.3390\/rs70810523","article-title":"Fourteen-year record (2000\u20132013) of the spatial and temporal dynamics of floating algae blooms in lake chaohu, observed from time series of MODIS images","volume":"7","author":"Zhang","year":"2015","journal-title":"Remote Sens."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223002455?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223002455?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,13]],"date-time":"2024-01-13T16:33:32Z","timestamp":1705163612000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843223002455"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":30,"alternative-id":["S1569843223002455"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2023.103421","relation":{},"ISSN":["1569-8432"],"issn-type":[{"type":"print","value":"1569-8432"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A three-step machine learning approach for algal bloom detection using stationary RGB camera images","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2023.103421","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103421"}}