{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T21:57:58Z","timestamp":1720821478951},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,13]],"date-time":"2023-06-13T00:00:00Z","timestamp":1686614400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.jag.2023.103390","type":"journal-article","created":{"date-parts":[[2023,6,16]],"date-time":"2023-06-16T22:48:31Z","timestamp":1686955711000},"page":"103390","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Per-pixel accuracy as a weighting criterion for combining ensemble of extreme learning machine classifiers for satellite image classification"],"prefix":"10.1016","volume":"122","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4662-1393","authenticated-orcid":false,"given":"Hamid","family":"Ebrahimy","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7816-672X","authenticated-orcid":false,"given":"Zhou","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2023.103390_b0005","doi-asserted-by":"crossref","first-page":"1367","DOI":"10.1109\/36.763301","article-title":"Classification of multisource and hyperspectral data based on decision fusion","volume":"37","author":"Benediktsson","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107563","article-title":"An ensemble deep learning method as data fusion system for remote sensing multisensor classification","volume":"110","author":"Bigdeli","year":"2021","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.jag.2023.103390_b0015","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1080\/10106049.2011.562309","article-title":"Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program","volume":"26","author":"Boryan","year":"2011","journal-title":"Geocarto. Int."},{"issue":"3","key":"10.1016\/j.jag.2023.103390_b0020","doi-asserted-by":"crossref","first-page":"288","DOI":"10.3390\/rs11030288","article-title":"Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine","volume":"11","author":"Carrasco","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0025","series-title":"Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining","first-page":"785","article-title":"Xgboost: A scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.jag.2023.103390_b0030","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.rse.2012.09.005","article-title":"Spatial analysis of remote sensing image classification accuracy","volume":"127","author":"Comber","year":"2012","journal-title":"Remote. Sens. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0035","series-title":"Ensemble methods in machine learning. Multiple Classifier Systems: First International Workshop","first-page":"1","author":"Dietterich","year":"2000"},{"issue":"4","key":"10.1016\/j.jag.2023.103390_b0040","doi-asserted-by":"crossref","first-page":"4764","DOI":"10.3390\/s120404764","article-title":"Multiple Classifier System for Remote Sensing Image Classification: A Review","volume":"12","author":"Du","year":"2012","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.jag.2023.103390_b0045","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.isprsjprs.2020.11.024","article-title":"Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data","volume":"172","author":"Ebrahimy","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0050","article-title":"Effectiveness of the integration of data balancing techniques and tree-based ensemble machine learning algorithms for spatially-explicit land cover accuracy prediction","volume":"27","author":"Ebrahimy","year":"2022","journal-title":"Remote Sens. Appl. Soc. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0055","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.rse.2004.06.017","article-title":"Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification","volume":"93","author":"Foody","year":"2004","journal-title":"Remote. Sens. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0060","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1109\/LGRS.2018.2803259","article-title":"Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting","volume":"15","author":"Georganos","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2023.103390_b0065","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2016.03.008","article-title":"Optical remotely sensed time series data for land cover classification: A review","volume":"116","author":"G\u00f3mez","year":"2016","journal-title":"ISPRS-J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0070","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.neucom.2013.09.070","article-title":"Ensemble of extreme learning machine for remote sensing image classification","volume":"149","author":"Han","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jag.2023.103390_b0075","doi-asserted-by":"crossref","first-page":"648","DOI":"10.1016\/j.rse.2017.09.035","article-title":"Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites","volume":"204","author":"Heydari","year":"2018","journal-title":"Remote. Sens. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0080","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: Theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.jag.2023.103390_b0085","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.isprsjprs.2019.09.016","article-title":"Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture","volume":"158","author":"Ienco","year":"2019","journal-title":"ISPRS-J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0090","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.rse.2016.02.028","article-title":"A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research","volume":"177","author":"Khatami","year":"2016","journal-title":"Remote. Sens. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0095","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.rse.2017.01.025","article-title":"Mapping per-pixel predicted accuracy of classified remote sensing images","volume":"191","author":"Khatami","year":"2017","journal-title":"Remote. Sens. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0100","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.isprsjprs.2021.09.015","article-title":"Local climate zone classification using a multi-scale, multi-level attention network","volume":"181","author":"Kim","year":"2021","journal-title":"ISPRS-J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0105","series-title":"Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa With Machine Learning Ensemble and Satellite Big Data","first-page":"8","author":"Liu","year":"2021"},{"key":"10.1016\/j.jag.2023.103390_b0110","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1109\/JSTARS.2017.2789213","article-title":"An Ensemble of Classifiers Based on Positive and Unlabeled Data in One-Class Remote Sensing Classification. IEEE J","volume":"11","author":"Liu","year":"2018","journal-title":"Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0115","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1109\/LSP.2010.2053356","article-title":"Ensemble Based Extreme Learning Machine","volume":"17","author":"Liu","year":"2010","journal-title":"IEEE Signal. Proc. Let."},{"key":"10.1016\/j.jag.2023.103390_b0120","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/01431160600746456","article-title":"A survey of image classification methods and techniques for improving classification performance","volume":"28","author":"Lu","year":"2007","journal-title":"Int. J. Remote. Sens."},{"key":"10.1016\/j.jag.2023.103390_b0125","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1109\/TGRS.2020.2996064","article-title":"Iterative Training Sample Expansion to Increase and Balance the Accuracy of Land Classification From VHR Imagery","volume":"59","author":"Lv","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0130","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.isprsjprs.2017.06.001","article-title":"A review of supervised object-based land-cover image classification","volume":"130","author":"Ma","year":"2017","journal-title":"ISPRS-J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0135","doi-asserted-by":"crossref","first-page":"4408","DOI":"10.1080\/01431161.2011.648284","article-title":"Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data","volume":"33","author":"Mallinis","year":"2012","journal-title":"Int. J. Remote. Sens."},{"key":"10.1016\/j.jag.2023.103390_b0140","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1109\/MGRS.2016.2641240","article-title":"Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques","volume":"5","author":"Maulik","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"10.1016\/j.jag.2023.103390_b0145","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.isprsjprs.2017.04.017","article-title":"Exploring diversity in ensemble classification: Applications in large area land cover mapping","volume":"129","author":"Mellor","year":"2017","journal-title":"ISPRS-J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0150","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.isprsjprs.2010.11.001","article-title":"Support vector machines in remote sensing: A review","volume":"66","author":"Mountrakis","year":"2011","journal-title":"ISPRS-J. Photogramm. Remote Sens."},{"issue":"21","key":"10.1016\/j.jag.2023.103390_b0155","doi-asserted-by":"crossref","first-page":"3484","DOI":"10.3390\/rs12213484","article-title":"RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine","volume":"12","author":"Naboureh","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0160","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1038\/nbt1206-1565","article-title":"What is a support vector machine?","volume":"24","author":"Noble","year":"2006","journal-title":"Nat. Biotechnol."},{"key":"10.1016\/j.jag.2023.103390_b0165","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.rse.2014.02.015","article-title":"Good practices for estimating area and assessing accuracy of land change","volume":"148","author":"Olofsson","year":"2014","journal-title":"Remote. Sens. Environ."},{"key":"10.1016\/j.jag.2023.103390_b0170","doi-asserted-by":"crossref","first-page":"3043","DOI":"10.1080\/01431160802007624","article-title":"Ensemble of support vector machines for land cover classification","volume":"29","author":"Pal","year":"2008","journal-title":"Int. J. Remote. Sens."},{"issue":"9","key":"10.1016\/j.jag.2023.103390_b0175","doi-asserted-by":"crossref","first-page":"967","DOI":"10.3390\/rs9090967","article-title":"Developments in Landsat Land Cover Classification Methods: A Review","volume":"9","author":"Phiri","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0180","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/MCAS.2006.1688199","article-title":"Ensemble based systems in decision making","volume":"6","author":"Polikar","year":"2006","journal-title":"IEEE Circ, Ayst, Mag."},{"key":"10.1016\/j.jag.2023.103390_b0185","doi-asserted-by":"crossref","first-page":"2514","DOI":"10.1109\/36.964989","article-title":"Integrated method for boundary delineation of agricultural fields in multispectral satellite images","volume":"39","author":"Rydberg","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"e1249","key":"10.1016\/j.jag.2023.103390_b0190","article-title":"Ensemble learning: A survey","volume":"8","author":"Sagi","year":"2018","journal-title":"Wiley Interdiscip. Rev.: Data Mining Knowl. Discov."},{"key":"10.1016\/j.jag.2023.103390_b0195","doi-asserted-by":"crossref","first-page":"3705","DOI":"10.1080\/01431161.2018.1446566","article-title":"A comparison of multiple classifier combinations using different voting-weights for remote sensing image classification","volume":"39","author":"Shen","year":"2018","journal-title":"Int. J. Remote. Sens."},{"key":"10.1016\/j.jag.2023.103390_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.05.018","article-title":"Key issues in rigorous accuracy assessment of land cover products","volume":"231","author":"Stehman","year":"2019","journal-title":"Remote. Sens. Environ."},{"issue":"7","key":"10.1016\/j.jag.2023.103390_b0205","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.3390\/rs12071135","article-title":"Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations\u2014A Review","volume":"12","author":"Talukdar","year":"2020","journal-title":"Remote Sens."},{"issue":"12","key":"10.1016\/j.jag.2023.103390_b0210","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.3390\/rs12122005","article-title":"Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem","volume":"12","author":"Vasilakos","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106090","article-title":"A new attention-based CNN approach for crop mapping using time series Sentinel-2 images","volume":"184","author":"Wang","year":"2021","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.jag.2023.103390_b0220","doi-asserted-by":"crossref","first-page":"955","DOI":"10.1016\/j.rse.2007.07.004","article-title":"Landsat continuity: Issues and opportunities for land cover monitoring","volume":"112","author":"Wulder","year":"2008","journal-title":"Remote. Sens. Environ."},{"issue":"11","key":"10.1016\/j.jag.2023.103390_b0225","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.3390\/rs9111205","article-title":"An Improved Rotation Forest for Multi-Feature Remote-Sensing Imagery Classification","volume":"9","author":"Xiu","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2023.103390_b0230","article-title":"Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer","volume":"102","author":"Zhang","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103390_b0235","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1109\/JSTARS.2014.2359136","article-title":"Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data. IEEE J","volume":"8","author":"Zhang","year":"2015","journal-title":"Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"17","key":"10.1016\/j.jag.2023.103390_b0240","doi-asserted-by":"crossref","first-page":"8654","DOI":"10.3390\/app12178654","article-title":"A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications","volume":"12","author":"Zhang","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.jag.2023.103390_b0245","series-title":"Ensemble learning","first-page":"181","author":"Zhou","year":"2021"}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223002145?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843223002145?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,8]],"date-time":"2023-12-08T02:06:08Z","timestamp":1702001168000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843223002145"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":49,"alternative-id":["S1569843223002145"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2023.103390","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Per-pixel accuracy as a weighting criterion for combining ensemble of extreme learning machine classifiers for satellite image classification","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2023.103390","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103390"}}