{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:31:00Z","timestamp":1727065860624},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,6]],"date-time":"2023-04-06T00:00:00Z","timestamp":1680739200000},"content-version":"vor","delay-in-days":5,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.jag.2023.103297","type":"journal-article","created":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T21:50:29Z","timestamp":1681509029000},"page":"103297","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Most complicated lock pattern-based seismological signal framework for automated earthquake detection"],"prefix":"10.1016","volume":"118","author":[{"given":"Suat","family":"Gokhan Ozkaya","sequence":"first","affiliation":[]},{"given":"Nursena","family":"Baygin","sequence":"additional","affiliation":[]},{"given":"Prabal D.","family":"Barua","sequence":"additional","affiliation":[]},{"given":"Arvind R.","family":"Singh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1086-457X","authenticated-orcid":false,"given":"Mohit","family":"Bajaj","sequence":"additional","affiliation":[]},{"given":"Mehmet","family":"Baygin","sequence":"additional","affiliation":[]},{"given":"Sengul","family":"Dogan","sequence":"additional","affiliation":[]},{"given":"Turker","family":"Tuncer","sequence":"additional","affiliation":[]},{"given":"Ru-San","family":"Tan","sequence":"additional","affiliation":[]},{"given":"U.","family":"Rajendra Acharya","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2023.103297_b0005","doi-asserted-by":"crossref","first-page":"106621","DOI":"10.1016\/j.soildyn.2021.106621","article-title":"A shaking table-based experimental study of seismic response of shield-enlarge-dig type's underground subway station in liquefiable ground","volume":"147","author":"An","year":"2021","journal-title":"Soil Dyn. Earthq. Eng."},{"issue":"8","key":"10.1016\/j.jag.2023.103297_b0010","doi-asserted-by":"crossref","DOI":"10.1029\/2019JB018975","article-title":"Acoustic energy release during the laboratory seismic cycle: insights on laboratory earthquake precursors and prediction","volume":"125","author":"Bolton","year":"2020","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"10.1016\/j.jag.2023.103297_b0015","doi-asserted-by":"crossref","first-page":"104867","DOI":"10.1016\/j.compbiomed.2021.104867","article-title":"PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition","volume":"138","author":"Dogan","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.jag.2023.103297_b0020","first-page":"103180","article-title":"Building change detection using the parallel spatial-channel attention block and edge-guided deep network","volume":"117","author":"Eftekhari","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103297_b0025","first-page":"102906","article-title":"Convolutional neural networks for mapping of lake sediment core particle size using hyperspectral imaging","volume":"112","author":"Ghanbari","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103297_b0030","first-page":"513","article-title":"Neighbourhood components analysis","volume":"17","author":"Goldberger","year":"2004","journal-title":"Adv. Neural Inf. Proces. Syst."},{"issue":"6","key":"10.1016\/j.jag.2023.103297_b0035","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1785\/gssrl.72.6.705","article-title":"The Southern California Earthquake Data Center (SCEDC)","volume":"72","author":"Hafner","year":"2001","journal-title":"Seismol. Res. Lett."},{"issue":"2","key":"10.1016\/j.jag.2023.103297_b0040","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1093\/gji\/ggaa233","article-title":"Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network","volume":"222","author":"Jozinovi\u0107","year":"2020","journal-title":"Geophys. J. Int."},{"key":"10.1016\/j.jag.2023.103297_b0045","doi-asserted-by":"crossref","unstructured":"Kavianpour, P., Kavianpour, M., Jahani, E., & Ramezani, A. (2021). Earthquake Magnitude Prediction using Spatia-temporal Features Learning Based on Hybrid CNN-BiLSTM Model. Paper presented at the 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS).","DOI":"10.1109\/ICSPIS54653.2021.9729358"},{"key":"10.1016\/j.jag.2023.103297_b0050","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.aiig.2021.12.002","article-title":"Deep convolutional autoencoders as generic feature extractors in seismological applications","volume":"2","author":"Kong","year":"2021","journal-title":"Artificial Intelligence in Geosciences"},{"issue":"4","key":"10.1016\/j.jag.2023.103297_b0055","doi-asserted-by":"crossref","first-page":"2173","DOI":"10.17341\/gazimmfd.426259","article-title":"Sens\u00f6r i\u015faretlerinden cinsiyet tan\u0131ma i\u00e7in yerel ikili \u00f6r\u00fcnt\u00fcler tabanl\u0131 yeni yakla\u015f\u0131mlar","volume":"34","author":"Kuncan","year":"2019","journal-title":"Gazi \u00dcniversitesi M\u00fchendislik Mimarl\u0131k Fak\u00fcltesi Dergisi"},{"key":"10.1016\/j.jag.2023.103297_b0060","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.aiig.2022.10.002","article-title":"A study on small magnitude seismic phase identification using 1D deep residual neural network","volume":"3","author":"Li","year":"2022","journal-title":"Artificial Intelligence in Geosciences"},{"issue":"10","key":"10.1016\/j.jag.2023.103297_b0065","doi-asserted-by":"crossref","first-page":"4773","DOI":"10.1029\/2018GL077870","article-title":"Machine learning seismic wave discrimination: Application to earthquake early warning","volume":"45","author":"Li","year":"2018","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.jag.2023.103297_b0070","unstructured":"Liu, H., & Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes. Paper presented at the Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence."},{"key":"10.1016\/j.jag.2023.103297_b0075","doi-asserted-by":"crossref","first-page":"107161","DOI":"10.1016\/j.cmpb.2022.107161","article-title":"Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011\u20132022)","volume":"226","author":"Loh","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.jag.2023.103297_b0080","doi-asserted-by":"crossref","first-page":"117555","DOI":"10.1016\/j.eswa.2022.117555","article-title":"A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop","volume":"204","author":"Lu","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.jag.2023.103297_b0085","first-page":"102713","article-title":"A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping","volume":"108","author":"Lv","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103297_b0090","first-page":"1","article-title":"Local earthquakes detection: A benchmark dataset of 3-component seismograms built on a global scale","volume":"1","author":"Magrini","year":"2020","journal-title":"Artif. Intell. Geosci."},{"issue":"7","key":"10.1016\/j.jag.2023.103297_b0095","doi-asserted-by":"crossref","DOI":"10.1029\/2020JB021566","article-title":"Designing convolutional neural network pipeline for near-fault earthquake catalog extension using single-station waveforms","volume":"126","author":"Majstorovi\u0107","year":"2021","journal-title":"J. Geophys. Res. Solid Earth"},{"issue":"2","key":"10.1016\/j.jag.2023.103297_b0100","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/MSP.2017.2779166","article-title":"Machine learning for volcano-seismic signals: Challenges and perspectives","volume":"35","author":"Malfante","year":"2018","journal-title":"IEEE Signal Process Mag."},{"key":"10.1016\/j.jag.2023.103297_b0105","series-title":"Semi-quantitative Approaches for Landslide Assessment and Prediction","year":"2015"},{"issue":"1","key":"10.1016\/j.jag.2023.103297_b0110","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1029\/2018JB016661","article-title":"Reliable real-time seismic signal\/noise discrimination with machine learning","volume":"124","author":"Meier","year":"2019","journal-title":"J. Geophys. Res. Solid Earth"},{"issue":"1","key":"10.1016\/j.jag.2023.103297_b0115","doi-asserted-by":"crossref","DOI":"10.1029\/2019GL085976","article-title":"A machine-learning approach for earthquake magnitude estimation","volume":"47","author":"Mousavi","year":"2020","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.jag.2023.103297_b0120","doi-asserted-by":"crossref","first-page":"179464","DOI":"10.1109\/ACCESS.2019.2947848","article-title":"STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI","volume":"7","author":"Mousavi","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jag.2023.103297_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107976","article-title":"Intra-domain and cross-domain transfer learning for time series data\u2014How transferable are the features?","volume":"239","author":"Otovi\u0107","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.jag.2023.103297_b0130","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1007\/s10950-021-09988-x","article-title":"Analysis of pulse-like ground motion recordings from Vrancea intermediate-depth earthquakes","volume":"25","author":"Pavel","year":"2021","journal-title":"J. Seismol."},{"key":"10.1016\/j.jag.2023.103297_b0135","unstructured":"Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061."},{"key":"10.1016\/j.jag.2023.103297_b0140","first-page":"102899","article-title":"Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level","volume":"112","author":"Qing","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"1","key":"10.1016\/j.jag.2023.103297_b0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-016-1423-9","article-title":"Minimum redundancy maximum relevance feature selection approach for temporal gene expression data","volume":"18","author":"Radovic","year":"2017","journal-title":"BMC Bioinf."},{"issue":"1","key":"10.1016\/j.jag.2023.103297_b0150","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1023\/A:1025667309714","article-title":"Theoretical and empirical analysis of ReliefF and RReliefF","volume":"53","author":"Robnik-\u0160ikonja","year":"2003","journal-title":"Mach. Learn."},{"key":"10.1016\/j.jag.2023.103297_b0155","series-title":"The Earth's Heterogeneous Mantle","first-page":"367","article-title":"Seismic detections of small-scale heterogeneities in the deep Earth","author":"Rost","year":"2015"},{"key":"10.1016\/j.jag.2023.103297_b0160","first-page":"1","article-title":"Unsupervised deep learning for single-channel earthquake data denoising and its applications in event detection and fully automatic location","volume":"60","author":"Saad","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"6","key":"10.1016\/j.jag.2023.103297_b0165","first-page":"373","article-title":"Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites","volume":"11","author":"Saraf","year":"2009","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"8","key":"10.1016\/j.jag.2023.103297_b0170","doi-asserted-by":"crossref","first-page":"3560","DOI":"10.1109\/TSP.2011.2143711","article-title":"Wavelet transform with tunable Q-factor","volume":"59","author":"Selesnick","year":"2011","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.jag.2023.103297_b0175","doi-asserted-by":"crossref","first-page":"110190","DOI":"10.1016\/j.knosys.2022.110190","article-title":"Automated accurate detection of depression using twin Pascal\u2019s triangles lattice pattern with EEG Signals","volume":"260","author":"Tasci","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.jag.2023.103297_b0180","first-page":"4","article-title":"GOCE data, models, and applications: A review","volume":"35","author":"van der Meijde","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103297_b0185","series-title":"Nonlinear Modeling","first-page":"55","article-title":"The support vector method of function estimation","author":"Vapnik","year":"1998"},{"issue":"3","key":"10.1016\/j.jag.2023.103297_b0190","doi-asserted-by":"crossref","first-page":"1412","DOI":"10.1177\/8755293020911388","article-title":"Practical limitations of earthquake early warning","volume":"36","author":"Wald","year":"2020","journal-title":"Earthq. Spectra"},{"key":"10.1016\/j.jag.2023.103297_b0195","first-page":"171","article-title":"Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series","volume":"64","author":"Wang","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103297_b0200","first-page":"102681","article-title":"Combining spatial response features and machine learning classifiers for landslide susceptibility mapping","volume":"107","author":"Wei","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2023.103297_b0205","first-page":"103150","article-title":"DS-Net: A dedicated approach for collapsed building detection from post-event airborne point clouds","volume":"116","author":"Xiu","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"3","key":"10.1016\/j.jag.2023.103297_b0210","doi-asserted-by":"crossref","DOI":"10.1029\/2021JB023283","article-title":"An End-To-End Earthquake Detection Method for Joint Phase Picking and Association Using Deep Learning","volume":"127","author":"Zhu","year":"2022","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"10.1016\/j.jag.2023.103297_b0215","unstructured":"Zye, D. (2021). MCLP, Retrieved from https:\/\/summerofmathexposition.substack.com\/."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156984322300119X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156984322300119X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T23:53:21Z","timestamp":1703030001000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S156984322300119X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":43,"alternative-id":["S156984322300119X"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2023.103297","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Most complicated lock pattern-based seismological signal framework for automated earthquake detection","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2023.103297","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103297"}}